File size: 14,341 Bytes
b61f04d 0bc5e4e b61f04d 37db0f5 b61f04d 37db0f5 b61f04d 37db0f5 b61f04d 37db0f5 b61f04d 37db0f5 b61f04d 37db0f5 b61f04d 5f345a8 b61f04d 76c6a11 b61f04d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import re
import copy
from enum import Enum
from abc import ABC, abstractmethod
from typing import Optional, List, Dict, Union, Tuple
from .result import Result, RankingExecInfo
Prompt = Union[str, List[Dict[str, str]]]
class PromptMode(Enum):
UNSPECIFIED = "unspecified"
RANK_GPT = "rank_GPT"
LRL = "LRL"
def __str__(self):
return self.value
class RankLLM(ABC):
"""
Abstract base class for the language model to be used for reranking
"""
def __init__(
self,
model: str,
context_size: int,
prompt_mode: PromptMode,
num_few_shot_examples: int = 0,
):
self.model = model
self._context_size = context_size
self._prompt_mode = prompt_mode
self._num_few_shot_examples = num_few_shot_examples
self._history = []
self._rerank_type = "code_reasoning"
def max_tokens(self):
"""
Returns the maximum number of tokens that can be processed by the model
"""
return self._context_size
@abstractmethod
def run_llm(self, prompt: Prompt, current_window_size: int) -> Tuple[str, int]:
"""
Abstract method to run the target language model with a passed in prompt.
Args:
prompt (Union[str, List[Dict[str, str]]]): The prompt to be processed by the model.
Returns:
Tuple[str, int]: A tuple object containing the text response and the number of tokens in the response.
"""
pass
@abstractmethod
def create_prompt_batched(
self,
results: List[Result],
rank_start: int,
rank_end: int,
batch_size: int,
) -> List[Tuple[Prompt, int]]:
"""
Abstract method to create prompts for reranking in batches.
Args:
results (List[Result]): The results to be reranked.
rank_start (int): The starting index for ranking.
rank_end (int): The ending index for ranking.
batch_size (int): The size of each batch.
Returns:
Tuple[List[Prompt], List[int]]: A tuple containing a list of prompts and a list of indices.
"""
pass
@abstractmethod
def create_prompt(
self, result: Result, rank_start: int, rank_end: int
) -> Tuple[Prompt, int]:
"""
Abstract method to create a prompt based on the result and given ranking range.
Args:
result (Result): The result object containing data for prompt generation.
rank_start (int): The starting rank for prompt generation.
rank_end (int): The ending rank for prompt generation.
Returns:
Tuple[Union[str, List[Dict[str, str]]], int]: A tuple object containing the generated prompt and the number of tokens in the generated prompt.
"""
pass
def permutation_pipeline(
self,
result: Result,
rank_start: int,
rank_end: int,
logging: bool = False,
) -> Result:
"""
Runs the permutation pipeline on the passed in result set within the passed in rank range.
Args:
result (Result): The result object to process.
rank_start (int): The start index for ranking.
rank_end (int): The end index for ranking.
logging (bool, optional): Flag to enable logging of operations. Defaults to False.
Returns:
Result: The processed result object after applying permutation.
"""
prompt, in_token_count = self.create_prompt(result, rank_start, rank_end)
if logging:
print(f"prompt: {prompt}")
permutation, out_token_count = self.run_llm(
prompt, current_window_size=rank_end - rank_start
)
if logging:
print(f"output: {permutation}")
ranking_exec_info = RankingExecInfo(
prompt, permutation, in_token_count, out_token_count
)
if result.ranking_exec_summary is None:
result.ranking_exec_summary = []
result.ranking_exec_summary.append(ranking_exec_info)
result = self.receive_permutation(result, permutation, rank_start, rank_end)
prompt, in_token_count = self.create_prompt(result, rank_start, rank_end)
if logging:
print(f"After receiving permutation: {prompt}")
return result
def permutation_pipeline_batched(
self,
results: List[Result],
rank_start: int,
rank_end: int,
logging: bool = False,
) -> List[Result]:
"""
Runs the permutation pipeline on the passed in result set within the passed in rank range for a batch of results.
Args:
results (List[Result]): The list of result objects to process.
rank_start (int): The start index for ranking.
rank_end (int): The end index for ranking.
logging (bool, optional): Flag to enable logging of operations. Defaults to False.
Returns:
List[Result]: The processed list of result objects after applying permutation.
"""
prompts = []
prompts = self.create_prompt_batched(
results, rank_start, rank_end, batch_size=32
)
batched_results = self.run_llm_batched(
[prompt for prompt, _ in prompts], current_window_size=rank_end - rank_start
)
results = []
for index, (result, (prompt, in_token_count)) in enumerate(
zip(results, prompts)
):
permutation, out_token_count = batched_results[index]
if logging:
print(f"output: {permutation}")
ranking_exec_info = RankingExecInfo(
prompt, permutation, in_token_count, out_token_count
)
if result.ranking_exec_summary is None:
result.ranking_exec_summary = []
result.ranking_exec_summary.append(ranking_exec_info)
result = self.receive_permutation(result, permutation, rank_start, rank_end)
results.append(result)
return results
def sliding_window(
self,
retrieved_result: Result,
rank_start: int,
rank_end: int,
window_size: int,
step: int,
logging: bool = False,
):
"""
Applies the sliding window algorithm to the reranking process.
Args:
retrieved_result (Result): The result object to process.
rank_start (int): The start index for ranking.
rank_end (int): The end index for ranking.
window_size (int): The size of each sliding window.
step (int): The step size for moving the window.
logging (bool, optional): Flag to enable logging of operations. Defaults to False.
Returns:
Result: The result object after applying the sliding window technique.
"""
rerank_result = copy.deepcopy(retrieved_result)
end_pos = rank_end
start_pos = rank_end - window_size
while end_pos > rank_start and start_pos + step != rank_start:
start_pos = max(start_pos, rank_start)
rerank_result = self.permutation_pipeline(
rerank_result, start_pos, end_pos, logging=logging
)
end_pos -= step
start_pos -= step
return rerank_result
def sliding_windows_batched(
self,
retrieved_results: List[Result],
rank_start: int,
rank_end: int,
window_size: int,
step: int,
logging: bool = False,
) -> List[Result]:
"""
Applies the sliding window algorithm to the reranking process for a batch of result objects.
Args:
retrieved_results (List[Result]): The list of result objects to process.
rank_start (int): The start index for ranking.
rank_end (int): The end index for ranking.
window_size (int): The size of each sliding window.
step (int): The step size for moving the window.
logging (bool, optional): Flag to enable logging of operations. Defaults to False.
Returns:
List[Result]: The list of result objects after applying the sliding window technique.
"""
rerank_results = [copy.deepcopy(result) for result in retrieved_results]
end_pos = rank_end
start_pos = rank_end - window_size
permutated_results = rerank_results
while end_pos > rank_start and start_pos + step != rank_start:
start_pos = max(start_pos, rank_start)
permutated_results = self.permutation_pipeline_batched(
rerank_results, start_pos, end_pos, logging=logging
)
end_pos -= step
start_pos -= step
return permutated_results
def receive_permutation(
self,
result: Result,
permutation: str,
rank_start: int,
rank_end: int,
) -> Result:
"""
Processes and applies a permutation to the ranking results.
This function takes a permutation string, representing the new order of items,
and applies it to a subset of the ranking results. It adjusts the ranks and scores in the
'result' object based on this permutation.
Args:
result (Result): The result object containing the initial ranking results.
permutation (str): A string representing the new order of items.
Each item in the string should correspond to a rank in the results.
rank_start (int): The starting index of the range in the results to which the permutation is applied.
rank_end (int): The ending index of the range in the results to which the permutation is applied.
Returns:
Result: The updated result object with the new ranking order applied.
Note:
This function assumes that the permutation string is a sequence of integers separated by spaces.
Each integer in the permutation string corresponds to a 1-based index in the ranking results.
The function first normalizes these to 0-based indices, removes duplicates, and then reorders
the items in the specified range of the 'result.hits' list according to the permutation.
Items not mentioned in the permutation string remain in their original sequence but are moved after
the permuted items.
"""
response = self._clean_response(permutation)
print(f"response after cleaning: {response}")
response = [int(x) - 1 for x in response.split()]
print(f"response after splitting: {response}")
response = self._remove_duplicate(response)
print(f"response after deduplication: {response}")
cut_range = copy.deepcopy(result.hits[rank_start:rank_end])
original_rank = [tt for tt in range(len(cut_range))]
response = [ss for ss in response if ss in original_rank]
print(f"response after selection: {response}")
response = response + [tt for tt in original_rank if tt not in response]
print(f"response after appending all original: {response}")
for j, x in enumerate(response):
result.hits[j + rank_start] = copy.deepcopy(cut_range[x])
# if "rank" in result.hits[j + rank_start]:
# result.hits[j + rank_start]["rank"] = cut_range[j]["rank"]
# if "score" in result.hits[j + rank_start]:
# result.hits[j + rank_start]["score"] = cut_range[j]["score"]
return result
def parse_reasoning_permutation(self, response: str) -> Tuple[str, bool]:
ranked_list_pattern = r"\s*(\[\d+\](?:\s*>\s*\[\d+\])*)\s*"
end_of_reasoning_tag = "</think>"
start_of_answer_tag = "<answer>"
end_of_answer_tag = "</answer>"
matched_ranked_list = None
if end_of_answer_tag in response and end_of_reasoning_tag in response:
parsed_answer = (
response[
response.index(end_of_reasoning_tag) : response.index(
end_of_answer_tag
)
]
.replace(start_of_answer_tag, "")
.strip()
)
match = re.findall(ranked_list_pattern, parsed_answer)
if match:
print(len(match))
matched_ranked_list = match[0].strip()
if matched_ranked_list:
print(f"re matched output: {matched_ranked_list}")
return matched_ranked_list, True
else:
match = re.findall(ranked_list_pattern, response, re.DOTALL | re.MULTILINE)
first_correct_match = None
for cand in match:
if ">" not in cand:
continue
else:
first_correct_match = cand
break
if first_correct_match:
print(f"re matched output: {first_correct_match}")
return first_correct_match, True
else:
print(f"re match FAILED: {response}")
return response, False
def run_llm_batched(
self,
prompts: List[Union[str, List[Dict[str, str]]]],
current_window_size: Optional[int] = None,
) -> List[Tuple[str, int]]:
...
def _remove_duplicate(self, response: List[int]) -> List[int]:
seen = set()
unique_response = []
for item in response:
if item not in seen:
seen.add(item)
unique_response.append(item)
return unique_response
def _clean_response(self, response: str) -> str:
# if self._rerank_type == "code_reasoning":
# response, _ = self.parse_reasoning_permutation(response)
new_response = ""
for char in response:
if not char.isdigit():
new_response += " "
else:
new_response += char
new_response = new_response.strip()
return new_response
def _replace_number(self, s: str) -> str:
return re.sub(r"\[(\d+)\]", r"(\1)", s)
|