import gradio as gr import subprocess from huggingface_hub import HfApi import spaces @spaces.GPU def merge_and_upload(weight_drop_prob, scaling_factor, base_model, model_to_merge, output_path, repo_name, token): # Construct the command to run hf_merge.py command = [ "python3", "hf_merge.py", "-p", str(weight_drop_prob), "-lambda", str(scaling_factor), base_model, model_to_merge, output_path ] # Run the command and capture the output result = subprocess.run(command, capture_output=True, text=True) # Check if the merge was successful if result.returncode != 0: return f"Error in merging models: {result.stderr}" # Upload the result to Hugging Face Hub api = HfApi() try: # Create a new repo or update an existing one api.create_repo(repo_id=repo_name, token=token, exist_ok=True) # Upload the file api.upload_file( path_or_fileobj=output_path, path_in_repo=output_path.split('/')[-1], repo_id=repo_name, token=token ) return f"Model merged and uploaded successfully to {repo_name}!" except Exception as e: return f"Error uploading to Hugging Face Hub: {str(e)}" # Define the Gradio interface iface = gr.Interface( fn=merge_and_upload, inputs=[ gr.Slider(minimum=0, maximum=1, value=0.13, label="Weight Drop Probability"), gr.Number(value=3.0, label="Scaling Factor"), gr.Textbox(label="Base Model File/Folder"), gr.Textbox(label="Model to Merge"), gr.Textbox(label="Output Path"), gr.Textbox(label="Hugging Face Repo Name"), gr.Textbox(label="Hugging Face Token", type="password") ], outputs=gr.Textbox(label="Output"), title="Model Merger and Uploader", description="Merge two models using the Super Mario merge method and upload to Hugging Face Hub." ) # Launch the interface iface.launch()