import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models import numpy as np class VGG19Loss(nn.Module): def __init__(self): super().__init__() self.vgg = VGG19Model() self.criterion = nn.L1Loss() self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] self.downsample = nn.AvgPool2d(2, stride=2, count_include_pad=False) def forward(self, x, y): while x.size()[3] > 1024: x, y = self.downsample(x), self.y.downsample(y) x_vgg = self.vgg(x) y_vgg = self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss class VGG19Model(torch.nn.Module): """ Vgg19 network for perceptual loss. """ def __init__(self, requires_grad=False): super(VGG19Model, self).__init__() # load pretrained weights from torchvision vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))), requires_grad=False) self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))), requires_grad=False) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X, is_normalize=True): if is_normalize: # x is within [-1,1] X = (X + 1) / 2 assert torch.all(X <= 1+1e-6) assert torch.all(X >= -1e-6) X = (X - self.mean) / self.std h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out if __name__ == '__main__': vgg_loss_fn = VGG19Loss() x1 = torch.randn([4, 3, 512, 512]).clamp(-1,1) x2 = torch.randn([4, 3, 512, 512]).clamp(-1,1) loss = vgg_loss_fn(x1, x2) print(loss)