Spaces:
Sleeping
Sleeping
File size: 43,417 Bytes
fd6fbf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
{
"cells": [
{
"cell_type": "markdown",
"id": "7abd29b8",
"metadata": {},
"source": [
"# Health Status Classification\n",
"\n",
"This notebook classifies individuals into \"Healthy\" or \"Patient\" categories using SVM and Random Forest classifiers. It includes:\n",
"- Data preprocessing\n",
"- Training of classifiers\n",
"- Comparison of performance metrics\n",
"- Visualization of results\n"
]
},
{
"cell_type": "markdown",
"id": "299604b4",
"metadata": {},
"source": [
"## Data Preprocessing"
]
},
{
"cell_type": "markdown",
"id": "22ee7ce2",
"metadata": {},
"source": [
"### 1. Import Dependecies"
]
},
{
"cell_type": "code",
"execution_count": 252,
"id": "76a44a0d",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
"from sklearn.svm import SVC\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import classification_report, confusion_matrix, accuracy_score\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "markdown",
"id": "a27c6dc7",
"metadata": {},
"source": [
"### 2. Load Dataset"
]
},
{
"cell_type": "code",
"execution_count": 253,
"id": "3772870e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Patient No.</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Family history</th>\n",
" <th>Height</th>\n",
" <th>Weight</th>\n",
" <th>BMI</th>\n",
" <th>Obese/non obese</th>\n",
" <th>Cholesterol</th>\n",
" <th>Triglycerides level</th>\n",
" <th>HDL level</th>\n",
" <th>LDL level</th>\n",
" <th>VLDL level</th>\n",
" <th>Health_status</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Female</td>\n",
" <td>65</td>\n",
" <td>No</td>\n",
" <td>1.64</td>\n",
" <td>64</td>\n",
" <td>23.80</td>\n",
" <td>Non-obese</td>\n",
" <td>145</td>\n",
" <td>119</td>\n",
" <td>60</td>\n",
" <td>66.0</td>\n",
" <td>19.0</td>\n",
" <td>healthy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>Female</td>\n",
" <td>50</td>\n",
" <td>Yes</td>\n",
" <td>1.70</td>\n",
" <td>70</td>\n",
" <td>24.22</td>\n",
" <td>Non-obese</td>\n",
" <td>220</td>\n",
" <td>107</td>\n",
" <td>69</td>\n",
" <td>134.0</td>\n",
" <td>17.0</td>\n",
" <td>healthy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>Female</td>\n",
" <td>45</td>\n",
" <td>No</td>\n",
" <td>1.67</td>\n",
" <td>63</td>\n",
" <td>22.59</td>\n",
" <td>Non-obese</td>\n",
" <td>190</td>\n",
" <td>251</td>\n",
" <td>42</td>\n",
" <td>108.0</td>\n",
" <td>40.0</td>\n",
" <td>healthy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>Female</td>\n",
" <td>48</td>\n",
" <td>No</td>\n",
" <td>1.61</td>\n",
" <td>79</td>\n",
" <td>30.48</td>\n",
" <td>Obese</td>\n",
" <td>228</td>\n",
" <td>185</td>\n",
" <td>65</td>\n",
" <td>134.0</td>\n",
" <td>29.0</td>\n",
" <td>healthy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>Male</td>\n",
" <td>74</td>\n",
" <td>No</td>\n",
" <td>1.76</td>\n",
" <td>83</td>\n",
" <td>26.79</td>\n",
" <td>Non-obese</td>\n",
" <td>157</td>\n",
" <td>113</td>\n",
" <td>49</td>\n",
" <td>90.0</td>\n",
" <td>18.0</td>\n",
" <td>healthy</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Patient No. Gender Age Family history Height Weight BMI \\\n",
"0 1 Female 65 No 1.64 64 23.80 \n",
"1 2 Female 50 Yes 1.70 70 24.22 \n",
"2 3 Female 45 No 1.67 63 22.59 \n",
"3 4 Female 48 No 1.61 79 30.48 \n",
"4 5 Male 74 No 1.76 83 26.79 \n",
"\n",
" Obese/non obese Cholesterol Triglycerides level HDL level LDL level \\\n",
"0 Non-obese 145 119 60 66.0 \n",
"1 Non-obese 220 107 69 134.0 \n",
"2 Non-obese 190 251 42 108.0 \n",
"3 Obese 228 185 65 134.0 \n",
"4 Non-obese 157 113 49 90.0 \n",
"\n",
" VLDL level Health_status \n",
"0 19.0 healthy \n",
"1 17.0 healthy \n",
"2 40.0 healthy \n",
"3 29.0 healthy \n",
"4 18.0 healthy "
]
},
"execution_count": 253,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load dataset\n",
"data = pd.read_excel(r'colelithiasis_dataset.xlsx')\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7edf91ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 100 entries, 0 to 99\n",
"Data columns (total 14 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Patient No. 100 non-null int64 \n",
" 1 Gender 100 non-null object \n",
" 2 Age 100 non-null int64 \n",
" 3 Family history 100 non-null object \n",
" 4 Height 100 non-null float64\n",
" 5 Weight 100 non-null int64 \n",
" 6 BMI 100 non-null float64\n",
" 7 Obese/non obese 100 non-null object \n",
" 8 Cholesterol 100 non-null int64 \n",
" 9 Triglycerides level 100 non-null int64 \n",
" 10 HDL level 100 non-null int64 \n",
" 11 LDL level 100 non-null float64\n",
" 12 VLDL level 100 non-null float64\n",
" 13 Health_status 100 non-null object \n",
"dtypes: float64(4), int64(6), object(4)\n",
"memory usage: 11.1+ KB\n"
]
}
],
"source": [
"data.info()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "aae142a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Health_status\n",
"patient 60\n",
"healthy 40\n",
"Name: count, dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Health_status'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "aafe0526",
"metadata": {},
"outputs": [],
"source": [
"# Drop unnecessary columns (e.g., Patient No.)\n",
"data = data.drop(columns=['Patient No.'])"
]
},
{
"cell_type": "markdown",
"id": "c7907326",
"metadata": {},
"source": [
"### 3. Feature Encoding"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7f22b9a6",
"metadata": {},
"outputs": [],
"source": [
"# Encode categorical variables\n",
"le_health_status = LabelEncoder()\n",
"data['Health_status'] = le_health_status.fit_transform(data['Health_status']) # 0 for healthy, 1 for patient\n",
"le_gender = LabelEncoder()\n",
"data['Gender'] = le_gender.fit_transform(data['Gender']) # 0 for Female, 1 for Male\n",
"le_family_history = LabelEncoder()\n",
"data['Family history'] = le_family_history.fit_transform(data['Family history']) # 0 for No, 1 for Yes\n",
"le_obese = LabelEncoder()\n",
"data['Obese/non obese'] = le_obese.fit_transform(data['Obese/non obese']) # 0 for Non-obese, 1 for Obese"
]
},
{
"cell_type": "markdown",
"id": "bcf93f5f",
"metadata": {},
"source": [
"### 4. Split features and target"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "eab4be22",
"metadata": {},
"outputs": [],
"source": [
"# Features and target\n",
"X = data.drop(columns=['Health_status'])\n",
"y = data['Health_status']\n"
]
},
{
"cell_type": "markdown",
"id": "c5ed059c",
"metadata": {},
"source": [
"### 5. Split data into training and testing sets"
]
},
{
"cell_type": "code",
"execution_count": 244,
"id": "cdeca4f2",
"metadata": {},
"outputs": [],
"source": [
"# Split the data\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)"
]
},
{
"cell_type": "markdown",
"id": "0558f2c8",
"metadata": {},
"source": [
"### 6. Scalling the features"
]
},
{
"cell_type": "code",
"execution_count": 245,
"id": "a037923f",
"metadata": {},
"outputs": [],
"source": [
"# Scale the features using StandardScaler\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)"
]
},
{
"cell_type": "markdown",
"id": "d934c22c",
"metadata": {},
"source": [
"## Training of classifiers"
]
},
{
"cell_type": "markdown",
"id": "c7fd1e71",
"metadata": {},
"source": [
"### 1. Support Vector Machine (SVM)"
]
},
{
"cell_type": "code",
"execution_count": 246,
"id": "aca26b71",
"metadata": {},
"outputs": [],
"source": [
"# SVM Classifier\n",
"svm_model = SVC(kernel='linear', C=0.9, random_state=42)\n",
"svm_model.fit(X_train, y_train)\n",
"svm_preds = svm_model.predict(X_test)"
]
},
{
"cell_type": "markdown",
"id": "e8bfefa5",
"metadata": {},
"source": [
"### 2. Random Forest Classifier"
]
},
{
"cell_type": "code",
"execution_count": 247,
"id": "a5ad9d40",
"metadata": {},
"outputs": [],
"source": [
"# Random Forest Classifier\n",
"rf_model = RandomForestClassifier(n_estimators=100, class_weight='balanced', random_state=42)\n",
"rf_model.fit(X_train, y_train)\n",
"rf_preds = rf_model.predict(X_test)"
]
},
{
"cell_type": "markdown",
"id": "e3fb4a5a",
"metadata": {},
"source": [
"## Comparison of performance metrics"
]
},
{
"cell_type": "code",
"execution_count": 249,
"id": "2ddc5b12",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Performance Metrics for SVM\n",
"Accuracy: 0.65\n",
"\n",
"Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" 0 0.55 0.75 0.63 8\n",
" 1 0.78 0.58 0.67 12\n",
"\n",
" accuracy 0.65 20\n",
" macro avg 0.66 0.67 0.65 20\n",
"weighted avg 0.68 0.65 0.65 20\n",
"\n",
"\n",
"Performance Metrics for Random Forest\n",
"Accuracy: 0.7\n",
"\n",
"Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" 0 0.60 0.75 0.67 8\n",
" 1 0.80 0.67 0.73 12\n",
"\n",
" accuracy 0.70 20\n",
" macro avg 0.70 0.71 0.70 20\n",
"weighted avg 0.72 0.70 0.70 20\n",
"\n"
]
}
],
"source": [
"def print_metrics(y_true, y_pred, model_name):\n",
" print(f\"\\nPerformance Metrics for {model_name}\")\n",
" print(\"Accuracy:\", accuracy_score(y_true, y_pred))\n",
" print(\"\\nClassification Report:\")\n",
" print(classification_report(y_true, y_pred))\n",
"\n",
"print_metrics(y_test, svm_preds, \"SVM\")\n",
"print_metrics(y_test, rf_preds, \"Random Forest\")"
]
},
{
"cell_type": "markdown",
"id": "38eefbb6",
"metadata": {},
"source": [
"## Visualization of results"
]
},
{
"cell_type": "code",
"execution_count": 251,
"id": "f74a2f74",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHoAAAHqCAYAAAB7kSmRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUB1JREFUeJzt3Qm8VGX9OP5nLiogAm4goKKWK+KKZuaWW2ZGLqVlmrjUNw0XJEzp9zU1FdA2Tc0tUyvX3CuN1ETTIhGXXFJx19TccAEVDe7/9Tnf/wz3Xi9wr3funXvOvN++jjBn5p555sxczmc+z+d5nlJjY2NjAgAAACD3GmrdAAAAAACqQ6IHAAAAoCAkegAAAAAKQqIHAAAAoCAkegAAAAAKQqIHAAAAoCAkegAAAAAKQqIHAAAAoCAkegAAAAAKQqIH6tyPfvSj9IlPfCL16NEjbbjhhlU//v77759WXXXVqh83r6ZMmZJKpVL2JwBUg2tt/Zk1a1b65je/mQYNGpTFFWPGjKn6c8RnKj5b/J/jjz8+O9eQBxI9FNaDDz6YvvKVr6RVVlkl9erVK6244oppxx13TGeccUZ2/7333pv9Y/2///u/CzzGjBkzsseMHTu22T/wDQ0N6fnnn//I499+++3Uu3fv7DGHHnpom9o5d+7cdOGFF6bPfvazadlll009e/bMLqwHHHBAuueee1Jn+vOf/5y+973vpS222CJrw4QJE1JRPPPMM9n7ENtJJ53U6mP22Wef7P6lllrqYz3HpZdemk477bQOthSAvLjooosq15bYFltssSy+iC/D//73v2vdvG57nppuxxxzTOqOIga67rrr2vUzEfedcMIJaYMNNshiiYgBhw8fno4++uj04osvps5ub5znQw45JP3mN79J3/jGN1IRPz933nnnR+5vbGxMK6+8cnb/F7/4xS57vyFPFqt1A6Az/O1vf0vbbrttGjp0aPrWt76V9XZEYmbq1Knp9NNPT4cddljaeOON09prr50uu+yyBSYC4ot82HfffZvtj2RM/FwkSZq65ppr2tXO9957L+2xxx7pT3/6U9p6663T97///SzZE0mKK6+8Ml188cXpueeeSyuttFLqDH/5y1+ypNUFF1yQllhiiU55jvPPPz/Nmzcv1Uok+eK9apnQmz17drr++uuz+z+u+Hw89NBD7epFi/c53vfOOt8AdL4f/vCHabXVVkvvv/9+FlvEF9P4QhrXhI5cV4p6npqKREh3FF/8o4Nwt912a9Pjn3rqqbTDDjtkcdqee+6Z/ud//ie7tv/zn//M4qprr702Pf74453W3ojhPv3pT6fjjjuu057jsccey+LEWonfpYi1ttxyy2b7b7/99vTCCy9k8XhXvd8hYsnumqiEliR6KKSTTz459e/fP02bNi0tvfTSze575ZVXmlV0HHvssVmQFhfLliJBEMmgSAo19YUvfKHVRE9cjHbZZZd09dVXt6mdRx11VJbk+dnPfvaRZEFcuGN/Z4pzEb1PnZl0WHzxxVMtxXsVCbgHHngg63EriyTPBx98kD7/+c9nwVJniy8DcZ4jYPIlACDfdt5557TJJptkf4/hM8svv3w65ZRT0g033JD22muvWjevW56naorOmj59+qRa+e9//5t11P3nP//JhmK3TEREHBqfh86O4YYNG9apz9GRREq1Yrjf/e536ec//3lWPdc03h4xYkR67bXXuqQd5c9btKFpO6A7M3SLQnryySfTuuuu+5EkTxg4cGCzRE/Typ2mpk+fnvVklB/T1Ne//vV0//33p0cffbSy7+WXX84SBnFfW0RPxLnnnpsNJ2utIiTmzBk3blyzap777rsvC5r69euXlQhvv/32WZKqtXLXu+66KxtyNmDAgOzitPvuu6dXX3218rh4TAzXiotXuTw2frY85Cn+3lLsj+FrZe+8807W9hhqFsFAnNt4PTEsbmHzBsRzfve7383KbuPn1lprrfTjH/84K8Vt+XwxBC5Ka6MHMB4b72skx9pq8803z3oTW77Hl1xySZbkiQqqliIJFAm7IUOGZM/5yU9+Mp144onZMLuyGGr3xz/+MT377LOV81d+neV5eC6//PKs9yfK+pdccsmsxLvlHD3/+te/smTbfvvt16wN0TMcn4Eo/wage9tqq60q8UdZdCb84Ac/yL6QRudTXIvjcbfddluzny1fd+M6eN5552XXnLj2bLrpplmHVUvla2J0GsSfUTnSmvZea+MLdSQO4poU184YAh8iVll99dWz54trX7S3WiJuinMS5yZitl133TW7LjZVHjb/yCOPZDHWMsss0yyx8tvf/jY7x9HuuKZ/7Wtf+8jw+hiK/+Uvfzmr8I7XEbFVPO6tt96qnIM4X1FJXb6mL2xumujQiw6k//f//t9Hkjwh4rRI9jQV57fczkgMRrV4y+F+8ZwR38X+qDSJv0ccF/FgOQYpxxFPP/10FoeU2xvvSzkGbPketTY/4KLOyYLm6IlKpqhginMdsU10lEY7Wnu+qE6P8xDHjueIuPWJJ55IbbX33nun119/Pd18883Nfq+uuuqqBcbb8Rn/zGc+k5ZbbrnsXMc5j8c3tbD3e2Gft5Zz9EQcHbd/9atffaRaKPbfeOONbX6tUG1SkhRSzMvz97//PSuhXliJcCQA4mIQF6Konokv1mXlxEBrF5IYfhMXrXhMlCWHK664IrsgR4KgLW666aasR6itY6offvjhLBiK4CEqiaJSJoKvCLqihHWzzTZr9vgYnhYXp6gMigt+zCUTgVy0M8R47ggo77777vTLX/4y2xfnoj0OPvjg7OIZx43gMC7GkaCIIK1lFVRZBJhf+tKXskD3oIMOyiaAnjx5clbdFIFNyyqmOF5U5HznO99Jffv2zXp1IjCJUum4iLc1UIhAcNKkSdmFN3qAYn6iOAetJY0iUIr3MhJl8WcEohGsR6ImJq8OEdxFMBQJu3KbW871E8mhqOKJAG3OnDmtVk6ts8462ePi9UcJcZybCD4i4IhqsvLnC4Duq/zFOq67ZXHNiOtrXINiGHl0jsSQnp122im79rZcACFiinjMt7/97exadeqpp2ZVI/HFulwdG9euuAbGNXfixInZdTfm9Gs5xLu919q//vWvWTXS6NGjs9tx7Jj7JOKNX/ziF9k1eObMmVmbDjzwwDZXwsZ1smXVRSQ5wi233JJ1XsWCEPEFOoY1xzyKMW9gdBi17CSK5MIaa6yRfYkuJ6siiRCV2VFFFZVV0aEVx4g4LTrHInkUiYE453EdjtgoEhtxDv7whz+kN998M0vCRTwQP/+pT30qG4IVIuG2IHGuQltjuIgr4n2K5F2c26gEiqkEolOu3M6ySOhEeyOui6RFnKef/OQnWXtiPp6IG6K9Rx55ZPa+RzIvREKordpyTloT7Y5Y8d13302HH354FodFsiQ+axEPRqdiUxF3RSVzxEHxWYjPT3Sg/uMf/2hTO+MzEEnHqKKPz0o5fo5jRVIqYsKW4rxGe+J54nVGp1t8duK1lWP0trzfrX3eWor3NGLUiBejozOSqpEgjXmb4vcuKpKgZhqhgP785z839ujRI9s233zzxu9973uNkydPbvzggw8+8tizzjor/vXO7i+bO3du44orrpj9bFPHHXdc9thXX321cdy4cY2rr7565b5NN9208YADDsj+Ho8ZPXr0Qtt45JFHZo+777772vSadtttt8Ylllii8cknn6zse/HFFxv79u3buPXWW1f2XXjhhdlxd9hhh8Z58+Y1e744H2+++WZl36hRoxr79OnT7Hmefvrp7OfjOC3F/jgHZf3791/k64znWGWVVSq3r7vuuuw4J510UrPHfeUrX2kslUqNTzzxRLPni9fcdN8DDzyQ7T/jjDMW+rzl1/GjH/2o8aGHHsr+/te//rXyni+11FKNs2fPbvUcvPvuux853re//e3GJZdcsvH999+v7Ntll12avbay2267LXu+T3ziEx85Vvm++LPp523LLbdsXGGFFRpfe+217JwutthijdOmTVvoawSga5WvsbfccksWCzz//PONV111VeOAAQMae/bsmd0u++9//9s4Z86cZj8/c+bM7N/6Aw888CPXq+WWW67xjTfeqOy//vrrs/2///3vK/s23HDDxsGDBze7lkfME4/ryLU22h7tKDv33HOz/YMGDWp8++23K/vHjx+f7W/62IWdp9a2pq9l4MCBja+//nqza3xDQ0Pjfvvt95HYa++99272HM8880wW15x88snN9j/44IPZNbS8P+Ks+Pnf/e53C21zxAIRE7TFRhttlMVAbRGxZ7zO4cOHN7733nuV/X/4wx+ydv3gBz+o7Ivnj30//OEPP/J8I0aMaLYv3u+IQ1o77y3fn5axR1vPSTxH03MyZsyYZvFUeOeddxpXW221xlVXXTWLZ5o+3zrrrNPsd+D000/P9sd7tDDl1xFx0JlnnpnFuuV4as8992zcdtttF3gOWsZdcf7j3G+33XZter8X9Hlrel9TL730UuOyyy7buOOOO2avNd6roUOHNr711lsLfY3Q2QzdopAiqx4VPZHRj9La6EGInosYQlPuhSn76le/mvWUNR3aExUy0bPR2rCtsqj0ifLTKKsu/9nWYVvlnr4QVSqLEr070YsXZbzR81U2ePDg7Dmj6qV8vLLooWhaXhrVQHGcGGpULdEDFb0y7VlZIspYo3IqeoKaih6piDejp6apmOiwaS/L+uuvn1U1RQ9nW8Vwr/i56BEK8V5HeXiUHLcmSn3Lonc1eiPj/EUPVtPheosyatSoZsdakOjtit6+WCo1eqyi93T8+PGdMq8BAB0X16aooIge/KjGjKFHEV80rayJa125kjMWJXjjjTeySt74t73pEOem8UjTiqDycLDy9e6ll17Kho3HtaVpxUXEPC3namnvtTaG1DStoClXCUf1UNM4pby/rdfgs846Kxt203Rr+lqierXpEOq4VsfraW3IS1QRNxWVFHFeo5onrtPlLapTohKjPESufK6ioimu49UQMVdb4rcQK6jGfDpRFdV0jr6oLonK3ZbDnlp7rfFZaE/csygf95zE+xJVME2Hq0U1c8ScUdUWw51aVrw0rWZu+Zlui3h/o9orKnIiJos/FxZvN427ogotqn/ieVv7nVuYlu/BgsTnrfw5j+eJz3UM5YpYFWpJoofCivLYCALiH/kokY4vznGBiICs6YUoyk4jCRRj3GPC3HIiICZbW9iEihtttFF2gY7Hxnwv8Q/9dttt1+b2lS8A0aZFiVLkuBDH+PqWooQ3Ap2W49FjxbGmysFjnI9qiQRaDI+LQDcu/FF6vaiLdySaYu6blgFSvI7y/Qt7HeXX0t7XEUFBjI+PpFysyrawICGGyUX5cQRC8T5FMF9eea3p2PVFabnSyMJEMivOXyQMIzEVpegAdE/lL3YxXCWGZ0SCobWJa2NYSyQv4gt+xBtxPYkv9q1dSxZ13S5fHyOJ0VLL+KCj19pyIiCu763tb+s1OGKDSIo13Zo+/4LimjifMYx5YdfUmGMmklZxPuK8Nt1iCHl58Y34uRhaE8PoYthYxHzx/rXnet5SxAZtid8W9Vojjmz5XsRnpeUwrI8T9yzMxz0n0dYFvWfl+6sdi8a5iM9NxNsR10enZcTyCxKJoJg3KM5jJBHj588+++x2v9/tieFiGFkk7uL7RgzTjMQp1JpED4UXPQmR9IkxtvEP/Ycffph94W8qvsRH70xcHGI8b0yy97nPfW6R450jWRBz3sTFJ3ri2rMEZVzcQ3myw2prOt9QUwsaZ1zWtAqoqaYTEZdFIiwSOzEePgLKmL8mkhQtewpr8TpaijkSInCMC3AE2/H+tibGpm+zzTZZJVjMj/P73/8+C+bLq2e0Z6n4tlTzNBVVWyEqpGLeBQC6p3ICIypeopIn5gOMmCAqM8tibrioWIlEfszNE3PCxfUkOoVau5ZU63r3cSzouWvZpkVdU+McRsxSPq8tt5jHsCzmuIllz7///e9n1SFR6RTxSsyz93FEDBeJg5adbNWwoHPeFu2J4ap9Tjrz8xO/WxFbnnPOOVnlc2uLrZTnmopq/kjyRHV0VCDFZyF+vr3P2Z4YLmK2qNwK0ZncnlgROotED3WlPBQmSoabiotC9HpFwiYuJNHTsLBhW2Vx4YhjPf744+0athXiQhUXwAgEFyUSTjHMKFYBaymGEkWCqWWv28dV7m2JhEdTCxryFcPHohw5VgGJFSAiidJypYmWE2VHIqNlT1h5SFTc3xmiVykmeIyVIGKCvQUtjxn3xwU7hlIdccQR2WSUEcw3LadfVED1cUTwEsFInLtINsZknAB0f3Etjwl249p25plnVvZHtU8Mt44qhJi0N6om4npSrh5ur/L1MSpZWmoZH9TqWttW5edfUFwTVSaLWj49Emjx5T0qL1pWDcUWVR1NrbfeetlKmHfccUeWEIgh+nHt/TjX9JEjR2Z/tiWGW9hrjX3VfC/aG8Mt6py0FG1d0HtWvr8zRJV1xLqx0uzC4u3oqI0kTwxJi0nDI9YuV5F1ZgwXk5jH71r8OxDTKcQCKFBrEj0UUozLbi1zXx7z3bLsNLL2cRGJ+6PqJ4KLmMNlUSLIiH/M4x/26N1rj0jMRHVJVHFERUxL0RsQvS3RsxJBZFSgxLLfTZfMjNUPIjkVY6WrNRY4jhMBVlz0m4qekZa9Qy3LYGN59ajsiVUcFiRK3ONnmwbDIVYAiYtueVWFznDSSSdlq5DFChOL6n1q+vmJxEvL1x/ic9KR0u+ySJDFSijRMxw9a7HKRvQQ//rXv+7wsQHofLECZsQBEROUEzmtXU9iXruYQ/DjiI6VWD0rhoM1vfZEJ0HLuVFqea1t72tpmpSI4eARF7VltaJYkSzOcaxw1DLmi9vlytio2I65kVomOCJx0DReiWt6ywTJgsTQoThGdM609n7Gl/5YnbPcyRjxUSRQmj5fdCzGELO2rtbaFuU5DZvGcPE5iFVWm2rrOWkp3pcYntT0NccQuzh+zPHUcq6oaol5gCI+jyHu5SRba+LzEJ/vphVMETdHZ2RL7Xm/FyYSulHdHyuMHXPMMdkwrkieRScw1JLl1Smk+CIfc9pE8ibKa+OLeszLEv8Qx4UoJodrKYZvxRfr6AWIap5F9SSVRdXHxxWJnCeffDIrl40ev6geid6YWDo8hpdFD0lcMMpJigjmIqkTFTRRkRJlyXFBjrlyqimWnIwLVvwZAUoEDC0vWBHExKSTEexssMEG2UU4lgCNOWbidS1IXKC33XbbLACKi2/8bAR1kcQaM2bMQpcz7agYkhXbwsSyofEexGSX8b5EwBDLcLaWOBwxYkT2mYpx7jE8MM7BwgKQ1sRxo9cpko0RxISo5oleqfhsRU9UJM8A6N4iYR8Vo1ERGhO5xjU9ru0Ri8SX+Ujqx5f9+DLcdIhXe0THUhwrYoG4dsQEz9FZFENumh6zltfatorh3pFwiuWzYynq8vLqMQ9QfKFflHgNERvFHIzxGmPBiqjOjvMc8y7GBMGxrHcsBX/ooYdm782aa66ZJTjiuh5JgehgaXpNjzjmpz/9aXbdjUqh8uTTLcUiHvHexjU6lnKPoexRNRz7Y56/6ISLWCISQbEvhn9H7BkxSAwlLy+vHjFpLJNeLfE5iEqmOCfx2Yg5amJ58ZZJnbaek5YikVFe6jxipDh+JOvinEfc0p4pDNor4rJFid+NeP8+//nPZ5U/MU9TzD20+uqrZ8PUmmrP+70gcfxY8j5+1+J8hkiuRodzDNuM6p7OPCewUJ2+rhfUwE033ZQtXbr22mtny2jHEt2xFPphhx3W+J///KfVn4llUGPJ0vi1uPHGG1t9TNPl1RemLcurN33eX/7yl41bbbVVtlTn4osvni0XGUu1t1x6/d57723caaedstcUS33H8pJ/+9vfFrgk5aKW9W5tafHy0pQHHXRQ1p5Y0nKvvfZqfOWVV5otrx5LSB511FGNG2ywQfaYOE78/Re/+MVCl1cvL8UZy70PGTIke71rrLFGtgx60+XgF3YeWy73uajl1RemtXNw1113NX76059u7N27d9bG733ve42TJ0/+yPmbNWtW49e//vXGpZdeutnStuVz3dqypS3fh/JSo1dffXWzxz333HON/fr1a/zCF76w0PYD0HUWdI0NsbT0Jz/5yWyLa3tc0yZMmJBdG2L58lh2OZbUbnldXNj1qul1tyyuF7FsdRxz2LBhjddcc03Vr7ULatPCrm9tPU9NxTL1W2yxRXa9jWveyJEjGx955JF2xV5xPrbccsvsWh5bxH7xeh577LHs/qeeeiqLCeN96dWrV7YUdsRP8dxNPfroo41bb7111pZ4vrYstT5z5sxsefT11lsvi8vi+LGUdyxDH8tuN3XFFVdkn4F436IN++yzT+MLL7zQ7DEListaW9a7taXFw5NPPtm4ww47ZM+zwgorNH7/+99vvPnmm5vFHm09J63FW3H8r3zlK1nsEz/7qU99Kvtct+VzUv5cxeejGp+f1s7BBRdckH3W4/XHZyGO1dr5W9D7vbDPW8vj7LHHHlkM/MwzzzR73PXXX5897pRTTllo+6EzleJ/C08FAQAAAJAHaskAAAAACkKiBwAAAKAgJHoAAAAACkKiBwDoFmIFmljpruU2evToWjcNAKBLzJ07Nx177LHZanCxMm+sMnjiiSe2ugrwglheHQDoFqZNm5YFN2UPPfRQ2nHHHbMlgAEA6sEpp5ySzj777HTxxRenddddN91zzz3pgAMOSP3790+HH354m45h1S0AoFsaM2ZM+sMf/pBmzJiRVfYAABTdF7/4xbTCCiukCy64oLLvy1/+clbd89vf/rZNxzB0CwDoNHPmzElvv/12sy32LcoHH3yQBTMHHnigJA8AUDfx0Gc+85l06623pscffzy7/cADD6Q777wz7bzzzvU9dGvQt66qdROgLjxz9ldq3QSoC7268Grde6NDq3q8o3ddPp1wwgnN9h133HHp+OOPX+jPXXfddenNN99M+++/f1XbU08+ffFetW4C1IUp+15U6yZAXejVY8kue67SjitV9XjHbfHNNsdDxxxzTJYIWnvttVOPHj2yYe0nn3xy2meffeo70QMAdA/jx49PY8eObbavZ8+ei/y5KFeOnqshQ4Z0YusAALpXPHTllVemSy65JF166aXZHD33339/Npw9YqJRo0a16fkkegCA+UrVHdUdQUxbEjtNPfvss+mWW25J11xzTVXbAgDQJlUeNt6eeOioo47Kqnq+9rWvZbfXW2+9LDaaOHGiRA8A8DF0g/lwLrzwwjRw4MC0yy671LopAEA9aqjdU7/77rupoaF5A2II17x589p8DIkeAKDbiCAmEj3RY7XYYsIUAKC+jBw5MpuTZ+jQodnQrfvuuy/99Kc/zRaoaCsRFADQaUO32iuGbD333HPtCmYAAIpS4XzGGWekY489Nn3nO99Jr7zySjY3z7e//e30gx/8oM3HkOgBALqNz33uc6mxsbHWzQAAqIm+ffum0047Lds+LokeAKBbzdEDAFBTpZRrEj0AQLcZugUAUHOlfGd6RHMAAAAABaGiBwAoTA8WAEC9l8RI9AAA8xm6BQDUu1K+O75EcwAAAAAFoaIHAChMDxYAQIflPBxS0QMAAABQECp6AID5zNEDANS7hnyX9Ej0AADzGboFANS7Uso13XYAAAAABaGiBwCYz9AtAKDelfJd0iPRAwAUJrABAOiwnIdDuu0AAAAACkJFDwAwn6FbAEC9a8h3SY9EDwAwn0QPAFDvSinXRHMAAAAABaGiBwAoTKkyAEC9L06hogcAAACgIFT0AADzmaMHAKh3Dfmu6JHoAQAKU6oMANBhOQ+HdNsBAAAAFISKHgBgPkO3AIB6V8p3SY9EDwBQmMAGAKDDch4O6bYDAAAAKAgVPQDAfIZuAQD1riHfJT2iOQAAAICCUNEDAMxnjh4AoN6VUq5J9AAA8xm6BQDUu1K+Mz2iOQAAAICCUNEDABSmBwsAoN5LYiR6AID5DN0CAOpdKd8dX6I5AAAAgIJQ0QMAFKYHCwCgw3IeDkn0AADzGboFANS7Ur4zPaI5AAAAgIJQ0QMAzKeiBwCodw0p13LefAAAAADKVPQAAIUZkw4AUO/xkEQPADCfoVsAQL0rpVwTzQEAAAAUhIoeAKAwpcoAAB3WkO94SKIHAJjP0C0AoN6V8p3oEc0BAAAAFISKHgCgMD1YAAAdlvNwSKIHAKgoSfQAAHWulPN4yNAtAAAAgIJQ0QMAFKYHCwCg3uMhFT0AAAAABaGiBwCYL98dWAAAHZbzgh6JHgCgOKXKAAAd1ZDzeMjQLQAAAICCUNEDAFSo6AEA6l0p5/GQRA8AUJjABgCg3uMhQ7cAAAAACkJFDwBQmB4sAIB6j4dU9AAAAAB0A6uuumqWaGq5jR49us3HUNEDAMyX7w4sAIAOq2VBz7Rp09LcuXMrtx966KG04447pj333LPNx5DoAQAKU6oMAJDneGjAgAHNbk+aNCl98pOfTNtss02bj2HoFgAAAEA388EHH6Tf/va36cADD2xX8klFDwBQoaIHAKh3pSrHQ3PmzMm2pnr27JltC3PdddelN998M+2///7tej4VPQBARWuT/3VkAwDIm1KV/5s4cWLq379/sy32LcoFF1yQdt555zRkyJB2tV9FDwAAAEAnGT9+fBo7dmyzfYuq5nn22WfTLbfckq655pp2P59EDwBQoQoHAKh3pSrHQ20ZptXShRdemAYOHJh22WWXdj+fRA8AMJ88DwBQ50o1jofmzZuXJXpGjRqVFlus/Wkbc/QAAAAAdBMxZOu5557LVtv6OFT0AAAVhm4BAPWuocbx0Oc+97nU2Nj4sX9eRQ8AAABAQajoAQAqVPQAAPWulPN4SKIHAChMYAMAUO/xkKFbAEC38e9//zvtu+++abnllku9e/dO6623Xrrnnntq3SwAgNxQ0QMAzFfDDqyZM2emLbbYIm277bbppptuSgMGDEgzZsxIyyyzTO0aBQDUnVK+C3okegCA7lGqfMopp6SVV145XXjhhZV9q622Ws3aAwDUp1LOMz2GbgEAnWbOnDnp7bffbrbFvtbccMMNaZNNNkl77rlnGjhwYNpoo43S+eef3+VtBgDIM4keAKBZD1Y1t4kTJ6b+/fs322Jfa5566ql09tlnpzXWWCNNnjw5HXLIIenwww9PF198cZefBwCgfpWqHA91NUO3AICKagcj48ePT2PHjm22r2fPnq0+dt68eVlFz4QJE7LbUdHz0EMPpXPOOSeNGjWqqu0CACjq0C2JHgCg00RSZ0GJnZYGDx6chg0b1mzfOuusk66++upOah0AQPFI9AAA3aIHK1bceuyxx5rte/zxx9Mqq6xSszYBAPWnlPOKHnP0AADdwpFHHpmmTp2aDd164okn0qWXXprOO++8NHr06Fo3DQAgNyR6AID5SlXe2mHTTTdN1157bbrsssvS8OHD04knnphOO+20tM8++3TWqwUA+Igo6Knm1tUM3QIAuk2p8he/+MVsAwCo13ioo1T0AAAAABSEih4AoDA9WAAA9R4PSfQAAIUJbAAAOqoh5/GQoVsAAAAABaGiBwCYL98dWAAAHZbzgh4VPQAAAABFoaIHAKgwRw8AUO9KOY+HJHqoqUFL90r/++X10nbDB6XeSyyWnnllVhpz0T3pgWdn1rppUBgXnH9uuvXmP6enn34q9ezVK2244UZpzNhxadXVPlHrptEN5T2wgTwasOQyafTG+6bNV9ww9VysZ3rhnZfTSXf9Ij36+lO1bhoUxgXnXZBuveUv6emnnkk9e/VMG264QRrz3SPSqqutWuum0Q2Vcj6WXaKHmum/5OLp90dvm+567NW0z+l3ptdnzUmrDeyb3nz3g1o3DQrlnml3p6/uvU9ad7310tz/zk1nnP7TdPC3DkrX3PDHtOSSS9a6eQB1re8SfdJ5O5+Ypr/8cDry1glp5vtvp5X7DU7vfDC71k2DQrnnnnvTV/f+alp3+Lpp7tz/pjNOOzMd/M1D0jW/vyYtuWTvWjcPqkqih5o59PNrpX/PfC+r4Cl77rV3a9omKKKzz7ug2e0fnjwpbbvV5ulfjzycRmyyac3aRfekoge61jeG75r+M/v1dNJdZ1f2vTTr1Zq2CYro7PPOanb7hxNOSNtuuX361yOPpBGbjKhZu+ieSjmPhyR6qJmdNhiSbnv4P+n8b386bb7m8umlN99LF015Kl3y16dr3TQotFnvvJP92a9//1o3hW4o74EN5M1WK2+Spr74QDp5myPTRisMS6+++0a65rE/p+tn3FrrpkGhzXpnVvaneIgixkM1TfS89tpr6Ve/+lX6+9//nl5++eVs36BBg9JnPvOZtP/++6cBAwbUsnl0sqED+qRRn/1EOvfmGen0Gx9NG666TDrpaxumD/87L13592dr3TwopHnz5qVTT5mQNtxo47TGGmvWujmAeKjuDek7MO2x1o7psof/mC5+8Nq0znKfTEd+6oD04bz/phufvL3WzYPixkOTfpw23HjDtMYaq9e6OVCcRM+0adPSTjvtlM0PscMOO6Q11/y/Lxz/+c9/0s9//vM0adKkNHny5LTJJpss9Dhz5szJtqYa536YSj0W79T203ENpVJ64JmZaeK1D2W3H3r+zbT2iv3Sftt8QqIHOsmEk05IT86YkS76zaW1bgrdVb47sHKnM+OheR/OTQ2L9+jU9tNxDakh/ev1J9M5912W3X78jWfSJ5cZmnZfc0eJHugkE06cmJ6c8US66LcX1ropdFOlnMdDNUv0HHbYYWnPPfdM55xzzkfKohobG9PBBx+cPSZ6txZm4sSJ6YQTTmi2r89Ge6alRuzVKe2mel556730+EtvN9s346V30i4br1SzNkGRTTjph+mO26ekX13827TCoEG1bg7dVN5LlfOmM+OhFXcdllbafd1OaTfV89p7M9Mzb77QbN8zb72QPrvKZjVrExTZhJMmpTtu/2v61a8vSCsMWqHWzaGbKuU8Hmqo1RM/8MAD6cgjj2z1BMa+uO/+++9f5HHGjx+f3nrrrWZbnw1376RWU013P/F6+uSgvs32fWKFvumF103IDNUUXxYjyfOXW29O5//q4rTSSivXuklAF8RDQ764die1mmr65yuPpaH9hzTbt3K/IellEzJDJ8RDk9JfbvlLOv9X56aVVlqx1k2C4iV6Yuz53XffvcD7474VVlh0hrVnz56pX79+zTbDtvLhvFtmpBGrLZsO/8LaadUBfdLun1o5fWPr1dKFU56oddOgUCaceEK68Q83pEmn/iT1WbJPeu3VV7Pt/fffr3XT6IYiuVDNjdrFQ4Zt5cPlj/wxDR+wRhq13u5ppb4rpM+ttkXabY3t09WPTq5106Bww7Vu/P0f06QfTUh9+kQ89Fq2iYcoYjxUs6Fb48aNS//zP/+Tpk+fnrbffvtKEBNj0m+99dZ0/vnnpx//+Me1ah5d4P5nZqYDz/57+v7uw9PYL66Tnnttdjr2igfSNf94vtZNg0K58or/m/fhoP2/0Wz/D0+amHbdfY8atQoI4iFifp6jb/txOmTjr6cDN/hyeumdV9Jp0y5Ok5++s9ZNg0K58vLfZX8eNOpbzfb/8OQT0q67f6lGrYKCJXpGjx6dll9++fSzn/0s/eIXv0hz587N9vfo0SONGDEiXXTRRWmvvcyzU3Q3//OlbAM6zwMPP1brJpAjinC6lniIcNcL92Yb0HkeeOS+WjeBHCnlPCCq6fLqX/3qV7Ptww8/zJYWDRHsLL64oVcAUAt5D2zySDwEAN1LKefhUE0TPWURyAwePLjWzQAAqBnxEABQmEQPANA95L0HCwCg3iucJXoAgMIENgAA9R4P1Wx5dQAAAACqS0UPAFCR8w4sAIBU7xU9Ej0AQEVDQ74DGwCAjsp5nsfQLQAAAICiUNEDABSmBwsAoN6HbqnoAQAAACgIFT0AQGF6sAAA6j0ekugBACpyHtcAAKR6T/QYugUAAABQECp6AIDC9GABAHRU3sMhiR4AoEKiBwCod6Wcx0OGbgEAAAAUhIoeAKAi5x1YAACp3gMiFT0AAAAABaGiBwAozJh0AIB6j4ckegCAipzHNQAAqd7jIUO3AAAAAApCRQ8AUJhSZQCAeo+HJHoAgIqcxzUAAKneEz2GbgEAAAAUhIoeAKAwPVgAAPUeD6noAQAqIq6p5gYAkDelGsdD//73v9O+++6blltuudS7d++03nrrpXvuuafNP6+iBwAAAKAbmDlzZtpiiy3Stttum2666aY0YMCANGPGjLTMMsu0+RgSPQBAYUqVAQDyHA+dcsopaeWVV04XXnhhZd9qq63WrmMYugUAAADQSebMmZPefvvtZlvsa80NN9yQNtlkk7TnnnumgQMHpo022iidf/757Xo+iR4AoNuMSQcA6A4VPaUqbhMnTkz9+/dvtsW+1jz11FPp7LPPTmussUaaPHlyOuSQQ9Lhhx+eLr744ja339AtAKDC0C0AoN6VqhwPjR8/Po0dO7bZvp49e7b62Hnz5mUVPRMmTMhuR0XPQw89lM4555w0atSoNj2fRA8AAABAJ4mkzoISOy0NHjw4DRs2rNm+ddZZJ1199dVtfj6JHgCgQkEPAFDvSjUMiGLFrccee6zZvscffzytssoqbT6GRA8AUGHoFgBQ70o1DIeOPPLI9JnPfCYburXXXnulu+++O5133nnZ1lYmYwYAAADoBjbddNN07bXXpssuuywNHz48nXjiiem0005L++yzT5uPoaIHAKhQ0AMA1LtSjQOiL37xi9n2canoAQAAACgIFT0AQLfpwQIAqLVSzuMhiR4AoDCBDQBAvcdDhm4BAAAAFISKHgCgIucdWAAAqd7jIYkeAKAwpcoAAPUeDxm6BQAAAFAQKnoAgIqcd2ABAKR6D4gkegCAwpQqAwDUezxk6BYAAABAQajoAQAqct6BBQDQYQ05j4dU9AAAAAAUhIoeAKCiQUkPAFDnSjmPhyR6AICKnMc1AACp3ju+DN0CAAAAKAgVPQBAYUqVAQDqPR5S0QMANFtloppbexx//PFZYNV0W3vttTvrpQIALDBRUs2tq6noAQC6jXXXXTfdcsstlduLLSZUAQBoD9ETANBtSpUjsTNo0KCatgEAqG95n4xZogcAqKh2XDNnzpxsa6pnz57Z1poZM2akIUOGpF69eqXNN988TZw4MQ0dOrS6jQIA6MYdXx1ljh4AoNNEoqZ///7NttjXms022yxddNFF6U9/+lM6++yz09NPP5222mqr9M4773R5uwEA8kpFDwBQUUrV7cEaP358Gjt2bLN9C6rm2XnnnSt/X3/99bPEzyqrrJKuvPLKdNBBB1W1XQAAC2LoFgDAAixsmNaiLL300mnNNddMTzzxRNXbBQBQVIZuAQDdYnn1lmbNmpWefPLJNHjw4Gq9PACANs3RU82tq6noAQC6xeSD48aNSyNHjsyGa7344ovpuOOOSz169Eh77713zdoEANSfhpRvEj0AQLfwwgsvZEmd119/PQ0YMCBtueWWaerUqdnfAQBoG4keAKCilnMPXn755bV7cgCA/5/JmAGAwsh7YAMAkOeh7NWQ96FnAAAAAPz/VPQAABU578ACAEj1XuGsogcAAACgIFT0AACFGZMOANBReY+GJHoAgAp5HgCg3jXkPCAydAsAAACgIFT0AACF6cECAKj3eEiiBwCoyHdYAwDQcXmfs9DQLQAAAICCUNEDABSmBwsAoKMM3QIACqMh33ENAECH5T0cMnQLAAAAoCBU9AAAFYZuAQD1riHn8VCbEj033HBDmw/4pS99qSPtAQDolsRDAEBhEj277bZbm3sB586d29E2AQA1kvMOrE4lHgKA+tCQ84CoTYmeefPmdX5LAICaM3RrwcRDAFAfSjmPh0zGDAAAAFDPkzHPnj073X777em5555LH3zwQbP7Dj/88Gq1DQDoYpZXbzvxEAAUU0POK3ranei577770he+8IX07rvvZgHOsssum1577bW05JJLpoEDBwpsACDH8l6q3FXEQwBQXKWU6mvo1pFHHplGjhyZZs6cmXr37p2mTp2ann322TRixIj04x//uHNaCQDQjYiHAIDCJHruv//+9N3vfjc1NDSkHj16pDlz5qSVV145nXrqqen73/9+57QSAOiyHqxqbkUlHgKAYg/daqji1uXtb+8PLL744llQE6I0Ocalh/79+6fnn3+++i0EALpM3gObriIeAoDiash5PNTuOXo22mijNG3atLTGGmukbbbZJv3gBz/IxqT/5je/ScOHD++cVgIAdCPiIQCgu2p3Rc+ECRPS4MGDs7+ffPLJaZlllkmHHHJIevXVV9N5553XGW0EALpIdDpVcysq8RAAFHtxilIVt25f0bPJJptU/h6lyn/605+q3SYAgG5NPAQAdFftTvQAAMVleXUAoN41pDpL9Ky22moLDQKfeuqpjrYJAKgReZ62EQ8BQHGVch4QtTvRM2bMmGa3P/zww3TfffdlJctHHXVUNdsGANAtiYcAgMIkeo444ohW95911lnpnnvuqUabAIAaKfKS6NUkHgKA4mqoYTx0/PHHpxNOOKHZvrXWWis9+uijXT/0bOedd05XX311tQ4HANSAVbc6RjwEAMVI9DRUcWuvddddN7300kuV7c4776zNZMxXXXVVWnbZZat1OACA3BEPAQAdtdhii6VBgwZ9/J9v7w9stNFGzSYmamxsTC+//HJ69dVX0y9+8YuP3RAAoPbyPvlgVxEPAUBxlWocD82YMSMNGTIk9erVK22++eZp4sSJaejQoZ2X6Nl1112bveiGhoY0YMCA9NnPfjatvfba7T0cAEDuiIcAgLaaM2dOtjXVs2fPbGtps802SxdddFE2L08M24r5erbaaqv00EMPpb59+7bp+UqN0QVVMLuce3etmwB14S/n/LrWTYC68N59Z3bZcx127b+qerwzdl+nqsej7a59+vJaNwHqwh7/M67WTYC60HjzC132XN+765iqHm/Jm3t9ZILl4447Lpt4eVHefPPNtMoqq6Sf/vSn6aCDDuqcip4ePXpkWaWBAwc22//6669n++bOndveQwIA3UStS5XzQjwEAMVVqnI8NH78+DR27Nhm+1qr5mnN0ksvndZcc830xBNPdN6qWwsqAIoypCWWWKK9hwMAyB3xEADQVpHU6devX7OtrYmeWbNmpSeffDINHjy4zc/X5oqen//855XM1i9/+cu01FJLVe6LXqs77rjDmHQAyLkGBT0LJR4CgOJrqGGF87hx49LIkSOz4VovvvhiNsQrKon33nvv6id6fvazn1V6sM4555zsicqi52rVVVfN9gMA+SXRs3DiIQAovlKqXUD0wgsvZEmdGA4eCz1sueWWaerUqdnfq57oefrpp7M/t91223TNNdekZZZZ5uO1GgAgp8RDAEBnuvzyji+m0O7JmG+77bYOPykA0D2ZjLltxEMAUFylnMdD7Z6M+ctf/nI65ZRTPrL/1FNPTXvuuWe12gUA1GjoVjW3ohIPAUBxxRw91dy6vP3t/YGYZPALX/jCR/bvvPPO2X0AAEUnHgIAuqt2D92Kpb1aWzZ08cUXT2+//Xa12gUA1EDOK5W7jHgIAIqr1P6amG6l3a1fb7310hVXXNHqhEHDhg2rVrsAALot8RAAUJiKnmOPPTbtscce6cknn0zbbbddtu/WW29Nl156abrqqqs6o40AQBepxTjyPBIPAUBxNeQ8Hmp3omfkyJHpuuuuSxMmTMgCmd69e6cNNtgg/eUvf0nLLrts57QSAOgS+S5U7jriIQAorlK9JXrCLrvskm0hxqFfdtllady4cWn69Olp7ty51W4jAEC3Ix4CAArVcRcrSowaNSoNGTIk/eQnP8nKlqdOnVrd1gEAXSo6sKq5FZ14CACKp1Tl/7p1Rc/LL7+cLrroonTBBRdkPVd77bVXmjNnTla6bOJBAMi/vI9J7wriIQAotoacx0MN7RmLvtZaa6V//vOf6bTTTksvvvhiOuOMMzq3dQAA3Yh4CADo7tpc0XPTTTelww8/PB1yyCFpjTXW6NxWAQA1kfMOrE4nHgKA4ivVS0XPnXfemd555500YsSItNlmm6Uzzzwzvfbaa53bOgCgSzWUqrsVjXgIAIqvocr/dX372+jTn/50Ov/889NLL72Uvv3tb6fLL788m3hw3rx56eabb86CHgCAIhMPAQDdXbtTS3369EkHHnhg1qP14IMPpu9+97tp0qRJaeDAgelLX/pS57QSAOiyyQeruRWVeAgAij10q1TFrat1qIYoJiM89dRT0wsvvJAuu+yy6rUKACAnxEMAQHfSruXVF6RHjx5pt912yzYAIL8KXITT6cRDAFAMpZwHRFVJ9AAAxVDECZQBANqjIeU7IOr66Z8BAAAA6BQqegCAilLOe7AAADrK0C0AoDAM3QIA6l1DzhM9hm4BAAAAFISKHgCgQkUPAFDvSjkfyq6iBwAAAKAgVPQAAIWZfBAAoKMaSvmuiZHoAQAqDN0CAOpdKecdX/lOUwEAAABQoaIHAKjIeQcWAECq98mYJXoAgIoGmR4AoM415DweMnQLAOiWJk2alI2RHzNmTK2bAgCQGyp6AIBuNxnztGnT0rnnnpvWX3/9WjcFAKgzpZwP3VLRAwBURKVyNbePY9asWWmfffZJ559/flpmmWWq/RIBABY5dKuaW1eT6AEAupXRo0enXXbZJe2www61bgoAQO4YugUAVDRUuVR5zpw52dZUz549s601l19+ebr33nuzoVsAALVQKuW7JibfrQcAurWJEyem/v37N9tiX2uef/75dMQRR6RLLrkk9erVq8vbCgBQBCp6AICKag8jHz9+fBo7dmyzfQuq5pk+fXp65ZVX0sYbb1zZN3fu3HTHHXekM888M6sM6tGjR3UbCABQsMmYJXoAgE5bdWthw7Ra2n777dODDz7YbN8BBxyQ1l577XT00UdL8gAAXaKhBhMoV5NEDwDQLfTt2zcNHz682b4+ffqk5ZZb7iP7AQBonUQPAFCYHiwAgI4q5TwekugBACq6W1wzZcqUWjcBAKgzDTmfo8eqWwAAAAAFoaIHAKgwdAsAqHelnMdDEj0AQEXO4xoAgA4rlfI9+CnfrQcAAACgQkUPAFChBwgAqHcNJmMGAAAAoDtQ0QMAFGbyQQCAeo+HJHoAgIp8hzUAAB1XynlEZOgWAAAAQEGo6AEAKhpyXqoMANBRhm4BAIWR77AGAKDjrLoFAAAAQLegogcAqMh5pTIAQIeVSvmuicl36wEAAACoUNEDABRm8kEAgHpfXl2iBwCoUOoLANS7Us47vsRzAAAAAN3QpEmTssTTmDFj2vwzKnoAgML0YAEAFGXo1rRp09K5556b1l9//Xb9nIoeAKCiVOUNACCPHV+lKm4fx6xZs9I+++yTzj///LTMMsu062clegAAAAC6kdGjR6dddtkl7bDDDu3+WUO3AIAKQ7cAgHrXUOW65Dlz5mRbUz179sy21lx++eXp3nvvzYZufRwqegCAZoFBNTcAgHofujVx4sTUv3//Zlvsa83zzz+fjjjiiHTJJZekXr16faz2q+gBAAAA6CTjx49PY8eObbZvQdU806dPT6+88kraeOONK/vmzp2b7rjjjnTmmWdmlUE9evRY6PNJ9AAAFYZuAQD1rlTluuSFDdNqafvtt08PPvhgs30HHHBAWnvttdPRRx+9yCRPkOgBAAAA6Ab69u2bhg8f3mxfnz590nLLLfeR/Qsi0QMAVKjnAQDqXSnnFc4SPQBARc7jGgCADit1s66vKVOmtOvxFsQAAAAAKAgVPQBARUM368ECAOhqDTkvcZboAQAqch7XAAAUbuhWexm6BQAAAFAQKnoAgML0YAEA1PuqWyp6AAAAAApCRQ8AUJHzDiwAgA4r5bwmRqIHAKiw6hYAUO9KOe/5yneaCgAAAIAKFT0AQEXOO7AAAFK9VzhL9AAAFRI9AEC9K+U8IDJ0CwAAAKAgVPQAABWlnJcqAwDUezwk0QMAVDTkO64BAOgwQ7cAAAAA6BZU9AAAhSlVBgDoqFLOa2Ly3XoAAAAAKlT0AAAVOR+SDgDQYQ05D4gkegCACkO3AIB6V8p5PGToFgAAAEBBqOgBACosrw4A1LuSoVsAQFHkvVQZAKDe4yGJHmrm6yNWTPtssmKzfc/PfC8dfOWDNWsTFNGjfzwhrTJkuY/sP+eKO9KRk66sSZsAaN2UK/6a/nThLWmL3T6dRh68c62bA4XR0NCQjv/G2LTv9nukQcsOTC++/nK66M+/SyddcnqtmwZVJ9FDTT3zxrvpf//wWOX23MbGmrYHimjLfX+UejQZjzNs9SHpxnMOS9fcfF9N20X3lPNKZci15x/7d/rHjfekQautUOumQOEc/dXvpENG7pdGnTomPfzs42mTNTdIF477SXpr9jvpjOt+Vevm0c2Uch4QSfRQU/PmNaaZ731Y62ZAob02c1az2+MOGJ6efO7V9NfpM2rWJrqvfIc1kF9z3puTrjj16rTHEV9Kf7nsjlo3BwrnM8M2Sdf/7c/pxrv/kt1+9j8vpL233TV9aq0Na900uqGGnK9ble/Wk3tD+vdKv953w3TB3uuncdt9Ig1YaolaNwkKbfHFeqSvfWHTdPH1f691UwBo4vqz/pjW+tQaaY2NP1nrpkAh/e2Re9L2G22R1lhxtez2+p9YJ205fNN007Tbat00qK9Ez/PPP58OPPDAWjeDTvLYK7PSz6Y8lX5w42PprL8+mwb17ZlO/dI6qffi3fpjCbn2pW3XT0v37Z1++/t/1LopdFMNpVJVNzpOPFR8D0x5MP37iZfS5w/YodZNgcKadPlZ6fIpN6RHf3V7+uCmp9N9Z09Op13zy3TpX66tddPopkO3SlXculq3/kb9xhtvpIsvvnihj5kzZ056++23m21zP/ygy9rIxzf9+bfSnU/NTM+88V6694W30nE3PZ76LNEjbfWJZWvdNCisUbt9Jk2+65H00qtv1bopQCfHQx/OMTQ6D9589a30+3NuSl/73pfT4kssXuvmQGHttc3ItM92u6evTzw0bXzIzmnUj45M4/Y8OO2341dq3TQo1hw9N9xww0Lvf+qppxZ5jIkTJ6YTTjih2b7Vd/lmWnPktzrcPrrW7A/mpn+/9X4a3L9XrZsChTR08DJpu83WSl8bd36tm0I3pganOPHQXod/OX1tjC8w3d2/Z7yYZr05O51x6LmVffPmzUvPPPRs+vsNd6eTfn9saujRrftmIRd+9K3/TZOuOCtdMeX//s196JlH0yoDV0zjv3Zo+vXNV9W6eXQzpZxHRDVN9Oy2225ZGVPjQlZaWlSZ0/jx49PYsWOb7dvr1/+sWhvpOr0Wa0iD+/VKf5nxeq2bAoX0jS9tnl554510018frnVT6M7yHdfkUmfFQ3968fqqtZHOs/qGn0hjzvlOs31X/eS6NGDl5dM2e20pyQNVsmSv3lkStam58+Zmy65D0VbdqumnevDgwemaa67JfuFa2+69995FHqNnz56pX79+zbYei5vQNw8O+vTKafjgvmngUkukdVZYKv3vTmukeY2N6fYnJHqgMy5W++366XTJH/6R5s5tHuQAtdVZ8dDiPQ0DyoOeS/ZMg1Zdodm2eK8l0pL9lsz+DlTH76fenP7f1w9PX/jUdmmVFVZKu23x+TT2y/+Trr3rT7VuGhSromfEiBFp+vTpadddd231/kX1bpFvy/VZIn1v+0+mfr0WS2+999/08MvvpLHXPZLefv+/tW4aFE4M2Ro6eNl08XVTa90Uurm8lyrnkXgIoPMdduax6cT9j0q/OHxCGrj08unF119O5/7xt+mHvz2t1k2jGyrlPB6qaaLnqKOOSrNnz17g/auvvnq67TbL3RXVqbc+WesmQN24deqjqfdGh9a6GeRAziuVc0k8REvf/tEBtW4CFM6s92anI88+PttgUSR6OmCrrbZa6P19+vRJ22yzTZe1BwCgq4mHAIDCJHoAgO4l3/1XAABVkPMSZ1OMAwAAABSEih4AYL58d2ABAHSYOXoAgMLIe2ADANBRseJlnhm6BQAAAFAQKnoAgIqcd2ABAKR6r3CW6AEAKvId1gAAdFzeEz2GbgEAAAAUhIoeAGC+fHdgAQB0mMmYAYBClSpX87/2OPvss9P666+f+vXrl22bb755uummmzrttQIAdLd4qBokegCAbmGllVZKkyZNStOnT0/33HNP2m677dKuu+6aHn744Vo3DQAgNwzdAgAqalmpPHLkyGa3Tz755KzKZ+rUqWndddetWbsAgPpSyvlYdokeAKDbmTt3bvrd736XZs+enQ3hAgCgbSR6AICKavdfzZkzJ9ua6tmzZ7a15sEHH8wSO++//35aaqml0rXXXpuGDRtW5VYBACyYyZgBgOIoVXebOHFi6t+/f7Mt9i3IWmutle6///70j3/8Ix1yyCFp1KhR6ZFHHunSUwAA1LdSzidjVtEDAHSa8ePHp7Fjxzbbt6BqnrDEEkuk1VdfPfv7iBEj0rRp09Lpp5+ezj333E5vKwBAEUj0AAAV1e51WtgwrbaYN2/eR4Z+AQB0plLOh25J9AAAFbWMa6L6Z+edd05Dhw5N77zzTrr00kvTlClT0uTJk2vXKACg7pSsugUA0HGvvPJK2m+//dJLL72UzeWz/vrrZ0meHXfcsdZNAwDIDYkeAKCilv1XF1xwQQ2fHQDg/6joAQCKI99xDQBAqvc5eiyvDgAAAFAQKnoAgMKUKgMA1Hs8pKIHAAAAoBs4++yzswUp+vXrl22bb755uummm9p1DBU9AEBFzoekAwDkuqJnpZVWSpMmTUprrLFGamxsTBdffHHadddd03333ZfWXXfdNh1DogcAqJDnAQDqXamGPV8jR45sdvvkk0/OqnymTp0q0QMAAABQa3PmzMm2pnr27JltCzN37tz0u9/9Ls2ePTsbwtVW5ugBAOYrVXkDAKjzgGjixImpf//+zbbYtyAPPvhgWmqppbJE0MEHH5yuvfbaNGzYsDa3XkUPAFCYVSYAALrb0K3x48ensWPHNtu3sGqetdZaK91///3prbfeSldddVUaNWpUuv3229uc7JHoAQAAAOgkbRmm1dQSSyyRVl999ezvI0aMSNOmTUunn356Ovfcc9v08xI9AECFVbcAgHpX6mYVzvPmzfvIHD8LI9EDAAAA0A3EMK+dd945DR06NL3zzjvp0ksvTVOmTEmTJ09u8zEkegCAiu7VfwUAUF8VPa+88krab7/90ksvvZRN2rz++utnSZ4dd9yxzceQ6AEA5pPpAQDqXKmGY9kvuOCCDh/D8uoAAAAABaGiBwDotpMPAgB0tVLO4yGJHgCgwqpbAEC9K+U80WPoFgAAAEBBqOgBACry3X8FAJDvyZirQaIHAJgv33ENAECHGboFAAAAQLegogcAKEwPFgBAvQ/dUtEDAAAAUBAqegCAipx3YAEApHqvcJboAQAq8h3WAABUQ74jIkO3AAAAAApCRQ8AUJQOLACAVO/hkEQPAFCYMekAAB1l1S0AAAAAugUVPQBARc47sAAAqiDfAZFEDwBQkLAGAKDj8h4PGboFAAAAUBAqegCACkO3AABKKc9U9AAAAAAUhIoeAKAwPVgAAPW+vLpEDwBQkfO4BgCg7hm6BQAAAFAQKnoAgAoFPQBAvSvlPCKS6AEAKgzdAgDqXSnniR5DtwAAAAAKQkUPAFCYHiwAgHqnogcAAACgIFT0AADzKegBAOpcKeeTFkr0AAAV+Q5rAAAwdAsAAACgIFT0AAAVOa9UBgBI9b44hUQPAFCYwAYAoOPyHQ8ZugUAAABQECp6AICidGABAKR6D4ckegCAwgQ2AAD1vry6oVsAAAAABaGiBwCoyHkHFgBAFeQ7IFLRAwAAAFAQKnoAgArLqwMA9a6U8k2iBwCoMHQLAKCU8szQLQAAAICCUNEDAAAAUJDl1SV6AICKnMc1AAB1z9AtAAAAgIJQ0QMAVFh1CwCod6Wcx0MqegAAAAAKQkUPAFBhjh4AgFLKM4keAKAgYQ0AQMflPR4ydAsAAACgIFT0AADF6cICAOigUs7Hskv0AACFWWUCAKDj8h0PGboFAAAAUBAqegCAipxXKgMAdFjewyGJHgCgMIENAEC9R0SGbgEAAAAUhEQPANC8A6uaWztMnDgxbbrppqlv375p4MCBabfddkuPPfZYZ71SAIAFrrpVza2r4yGJHgCgW7j99tvT6NGj09SpU9PNN9+cPvzww/S5z30uzZ49u9ZNAwDITTxkjh4AoFssr/6nP/2p2e2LLroo68maPn162nrrrWvWLgCAPMVDEj0AQLdcdeutt97K/lx22WVr3RQAoI6UutFkzB8nHpLoAQA6zZw5c7KtqZ49e2bbwsybNy+NGTMmbbHFFmn48OGd3EoAgOLEQ6XGxsbGj91aqJL40MekU+PHj1/khx34ePyeUQvHH398OuGEE5rtO+6447L9C3PIIYekm266Kd15551ppZVW6uRWQu35Nxq6ht816iEekuihW3j77bdT//79s7K0fv361bo5UEh+z8hLD9ahhx6arr/++nTHHXek1VZbrQtaCbXn32joGn7XqId4yNAtAKDTtKUsuSz6ng477LB07bXXpilTpkjyAACF0LOL4yGJHgCgW4ilRC+99NKs96pv377p5ZdfzvZHz2vv3r1r3TwAgFzEQ4Zu0S0ooYTO5/eM7q60gCW/LrzwwrT//vt3eXugK/k3GrqG3zXqIR5S0UO3EGVsMRmVCdGg8/g9o7vT90Q98280dA2/a9RDPKSiBwAAAKAgGmrdAAAAAACqQ6IHAAAAoCAkegAAAAAKQqKHmjvrrLPSqquumnr16pU222yzdPfdd9e6SVA4d9xxRxo5cmQaMmRINpP/ddddV+smAdCEeAg6l1iIeiLRQ01dccUVaezYsdnM9/fee2/aYIMN0k477ZReeeWVWjcNCmX27NnZ71d8kQCgexEPQecTC1FPrLpFTUWP1aabbprOPPPM7Pa8efPSyiuvnA477LB0zDHH1Lp5UEjRi3Xttdem3XbbrdZNAUA8BF1OLETRqeihZj744IM0ffr0tMMOO1T2NTQ0ZLf//ve/17RtAABdQTwEQLVJ9FAzr732Wpo7d25aYYUVmu2P2y+//HLN2gUA0FXEQwBUm0QPAAAAQEFI9FAzyy+/fOrRo0f6z3/+02x/3B40aFDN2gUA0FXEQwBUm0QPNbPEEkukESNGpFtvvbWyLyYfjNubb755TdsGANAVxEMAVNtiVT8itEMsJTpq1Ki0ySabpE996lPptNNOy5Y+POCAA2rdNCiUWbNmpSeeeKJy++mnn073339/WnbZZdPQoUNr2jaAeicegs4nFqKeWF6dmoulRH/0ox9lEw5uuOGG6ec//3m2zChQPVOmTEnbbrvtR/bHF4uLLrqoJm0CYD7xEHQusRD1RKIHAAAAoCDM0QMAAABQEBI9AAAAAAUh0QMAAABQEBI9AAAAAAUh0QMAAABQEBI9AAAAAAUh0QMAAABQEBI9AAAAAAUh0QO0yf7775922223yu3PfvazacyYMV3ejilTpqRSqZTefPPNLn9uAKB+iYWAvJDogQIEHXGxj22JJZZIq6++evrhD3+Y/vvf/3bq815zzTXpxBNPbNNjBSQAQGcRCwE0t1iL20AOff7zn08XXnhhmjNnTrrxxhvT6NGj0+KLL57Gjx/f7HEffPBBFgBVw7LLLluV4wAAdJRYCGA+FT1QAD179kyDBg1Kq6yySjrkkEPSDjvskG644YZKifHJJ5+chgwZktZaa63s8c8//3zaa6+90tJLL50FKbvuumt65plnKsebO3duGjt2bHb/csstl773ve+lxsbGZs/Zslw5Aqujjz46rbzyyll7ojftggsuyI677bbbZo9ZZpllst6saFeYN29emjhxYlpttdVS79690wYbbJCuuuqqZs8Twdqaa66Z3R/HadpOAIAgFgKYT6IHCigCgeixCrfeemt67LHH0s0335z+8Ic/pA8//DDttNNOqW/fvumvf/1ruuuuu9JSSy2V9YSVf+YnP/lJuuiii9KvfvWrdOedd6Y33ngjXXvttQt9zv322y9ddtll6ec//3n617/+lc4999zsuBHsXH311dljoh0vvfRSOv3007PbEdj8+te/Tuecc056+OGH05FHHpn23XffdPvtt1eCsD322CONHDky3X///emb3/xmOuaYYzr57AEAeScWAupaI5Bro0aNatx1112zv8+bN6/x5ptvbuzZs2fjuHHjsvtWWGGFxjlz5lQe/5vf/KZxrbXWyh5bFvf37t27cfLkydntwYMHN5566qmV+z/88MPGlVZaqfI8YZtttmk84ogjsr8/9thj0cWVPXdrbrvttuz+mTNnVva9//77jUsuuWTj3/72t2aPPeiggxr33nvv7O/jx49vHDZsWLP7jz766I8cCwCoX2IhgObM0QMFEL1T0WMUPVRRAvz1r389HX/88dn49PXWW6/ZWPQHHnggPfHEE1kvVlPvv/9+evLJJ9Nbb72V9TRtttlmlfsWW2yxtMkmm3ykZLkseph69OiRttlmmza3Odrw7rvvph133LHZ/uhJ22ijjbK/R29Y03aEzTffvM3PAQDUB7EQwHwSPVAAMV777LPPzoKYGH8ewUhZnz59mj121qxZacSIEemSSy75yHEGDBjwscuj2yvaEf74xz+mFVdcsdl9Ma4dAKCtxEIA80n0QAFEABMT/rXFxhtvnK644oo0cODA1K9fv1YfM3jw4PSPf/wjbb311tntWJ50+vTp2c+2JnrKovcsxpPH5IctlXvRYmLDsmHDhmVBzHPPPbfA3q911lknm0ixqalTp7bpdQIA9UMsBDCfyZihzuyzzz5p+eWXz1aXiAkIn3766TRlypR0+OGHpxdeeCF7zBFHHJEmTZqUrrvuuvToo4+m73znO+nNN99c4DFXXXXVNGrUqHTggQdmP1M+5pVXXpndHytgxAoTUVb96quvZj1YUS49bty4bNLBiy++OCuVvvfee9MZZ5yR3Q4HH3xwmjFjRjrqqKOyyQsvvfTSbGJEAICPSywEFJ1ED9SZJZdcMt1xxx1p6NCh2SoO0VN00EEHZePSy71a3/3ud9M3vvGNLGCJceARiOy+++4LPW6US3/lK1/JAqG11147fetb30qzZ8/O7oty5BNOOCFbJWKFFVZIhx56aLb/xBNPTMcee2y24kS0I1a7iPLlWGI0RBtjlYoImGK50ViRYsKECZ1+jgCA4hILAUVXihmZa90IAAAAADpORQ8AAABAQUj0AAAAABSERA8AAABAQUj0AAAAABSERA8AAABAQUj0AAAAABSERA8AAABAQUj0AAAAABSERA8AAABAQUj0AAAAABSERA8AAABAQUj0AAAAAKRi+P8AEr+nGwxk/aQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x500 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Confusion Matrices\n",
"svm_cm = confusion_matrix(y_test, svm_preds)\n",
"rf_cm = confusion_matrix(y_test, rf_preds)\n",
"\n",
"fig, axes = plt.subplots(1, 2, figsize=(12, 5))\n",
"sns.heatmap(svm_cm, annot=True, fmt='d', cmap='Blues', ax=axes[0])\n",
"axes[0].set_title('SVM Confusion Matrix')\n",
"axes[0].set_xlabel('Predicted')\n",
"axes[0].set_ylabel('Actual')\n",
"\n",
"sns.heatmap(rf_cm, annot=True, fmt='d', cmap='Greens', ax=axes[1])\n",
"axes[1].set_title('Random Forest Confusion Matrix')\n",
"axes[1].set_xlabel('Predicted')\n",
"axes[1].set_ylabel('Actual')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a2c284f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "ml_env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|