Spaces:
Sleeping
Sleeping
File size: 12,963 Bytes
461222e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from plotly import graph_objects as go
st.set_page_config(layout="wide")
# Load Dataset
def load_data():
data = pd.read_excel(r'Model Training/colelithiasis_dataset.xlsx') # Update with your dataset file path
data.drop('Patient No.', axis=1, inplace=True)
return data
# Initialize Session State
if "data" not in st.session_state:
st.session_state.data = load_data()
def introduction_page():
st.title("Introduction")
st.markdown("""
## Project Overview
This project analyzes the Colelithiasis dataset to perform exploratory data analysis (EDA) and prediction using pre-trained machine learning models. The goal is to provide insights into the data and make predictions efficiently.
## Objectives
- Perform EDA to uncover patterns and insights.
- Use pre-trained machine learning models for predictions.
- Create an interactive Streamlit application.
""")
def stats_page():
st.title("Exploratory Data Analysis")
# Dataset Overview
st.subheader("Dataset Overview")
st.dataframe(st.session_state.data.head())
# Summary Statistics
st.subheader("Summary Statistics")
st.write(st.session_state.data.describe())
# Correlation Matrix
st.subheader("Correlation Analysis")
# encode the target variable
data = st.session_state.data.copy()
data['Health_status'].replace({'healthy': 0, 'patient': 1}, inplace=True)
# apply ordinal encoding to the categorical columns
categorical_columns = ['Gender','Family history','Obese/non obese']
encoder = joblib.load('Model Training\encoder.pkl')
data[categorical_columns] = encoder.transform(data[categorical_columns])
correlation = data.corr()
plt.figure(figsize=(5, 3))
# reduce the font size of the heatmap
sns.set(font_scale=0.5)
sns.heatmap(correlation, annot=True, cmap="coolwarm", fmt=".2f")
st.pyplot(plt, use_container_width=False)
def eda_page():
st.title("Exploratory Data Analysis")
# Interactive Visualizations
st.subheader("Visualizations")
chart_type = st.selectbox("Choose Chart Type", ["Histogram", "Scatter Plot", "Box Plot"])
if chart_type == "Histogram":
column = st.selectbox("Choose Column for Visualization", st.session_state.data.columns)
fig = go.Figure()
fig.add_trace(go.Histogram(x=st.session_state.data[column], name=column, marker_color="indigo"))
fig.update_layout(
title=dict(text="Histogram Analysis", x=0.5, font=dict(size=22)),
xaxis_title=column,
yaxis_title="Count",
legend=dict(title="Legend", orientation="h", x=0.5, xanchor="center"),
bargap=0.2,
hovermode="x unified",
template="plotly_dark"
)
st.plotly_chart(fig)
elif chart_type == "Scatter Plot":
x_col = st.selectbox("Choose X-axis Column", st.session_state.data.columns)
y_col = st.selectbox("Choose Y-axis Column", st.session_state.data.columns)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=st.session_state.data[x_col],
y=st.session_state.data[y_col],
mode="markers",
marker=dict(size=10, color="purple", line=dict(width=1, color="white")),
name=f"{y_col} vs {x_col}"
))
fig.update_layout(
title=dict(text="Scatter Plot Analysis", x=0.5, font=dict(size=22)),
xaxis_title=x_col,
yaxis_title=y_col,
legend=dict(title="Legend", orientation="h", x=0.5, xanchor="center"),
hovermode="closest",
template="plotly_dark"
)
st.plotly_chart(fig)
elif chart_type == "Box Plot":
column = st.selectbox("Choose Column for Visualization", st.session_state.data.columns)
fig = go.Figure()
fig.add_trace(go.Box(
y=st.session_state.data[column],
name=column,
boxmean="sd",
marker_color="teal"
))
fig.update_layout(
title=dict(text="Boxplot Analysis", x=0.5, font=dict(size=22)),
yaxis_title=column,
legend=dict(title="Legend", orientation="h", x=0.5, xanchor="center"),
hovermode="y",
template="plotly_dark"
)
st.plotly_chart(fig)
def model_page():
st.title("Model Evaluation")
test_data = pd.read_excel(r'Model Training\test_data.xlsx')
# encode the target variable
test_data['Health_status'].replace({'healthy': 0, 'patient': 1}, inplace=True)
# apply ordinal encoding to the categorical columns
categorical_columns = ['Gender','Family history','Obese/non obese']
encoder = joblib.load('Model Training\encoder.pkl')
X = test_data.drop( columns=['Health_status'])
X[categorical_columns] = encoder.transform(X[categorical_columns])
y = test_data['Health_status']
# apply standard scalling to numberical features in X
numerical_columns = [col_name for col_name in X.columns if col_name not in categorical_columns]
scaler = joblib.load('Model Training\scaler.pkl')
X[numerical_columns] = scaler.transform(X[numerical_columns])
# Model Selection
st.text("Model Selection")
model_choice = st.selectbox("Choose a Pre-trained Model", ["SVM - Linear", "SVM - Polynomial", "SVM - RBF",
"Random Forest","Random Forest Boosted", "Logistic Regression", "GDA"])
# Load pre-trained model
model = None
if model_choice == "SVM - Linear":
model = joblib.load('Model Training\svm_model_linear.pkl')
elif model_choice == "SVM - Polynomial":
model = joblib.load('Model Training\svm_model_poly.pkl')
elif model_choice == "SVM - RBF":
model = joblib.load('Model Training\svm_model_rbf.pkl')
elif model_choice == "Random Forest":
model = joblib.load('Model Training\rf_model.pkl')
elif model_choice == "Random Forest Boosted":
model = joblib.load('Model Training\rf_boosted.pkl')
elif model_choice == "Logistic Regression":
model = joblib.load('Model Training\lr_model.pkl')
elif model_choice == "GDA":
model = joblib.load('Model Training\gda.pkl')
if model:
# Make Predictions
y_pred = model.predict(X)
col1, col2 = st.columns(2)
with col1:
st.subheader("### Predictions on the Test Data:")
st.dataframe(pd.DataFrame({"Actual": y, "Predicted": y_pred}))
with col2:
st.subheader("Classification Report")
report = classification_report(y, y_pred, output_dict=True)
report_df = pd.DataFrame(report).transpose().reset_index()
report_df.drop('support', axis=1, inplace=True)
report_df.set_index(['index'], inplace=True)
report_df.rename(index={'0.0': 'Negative', '1.0': 'Positive'}, inplace=True)
report_df.iloc[report_df.index.get_loc('accuracy'), 0:2] = ''
st.table(report_df)
st.subheader("Confusion Matrix")
conf_matrix = confusion_matrix(y, y_pred)
# Generate text annotations for the confusion matrix
text_annotations = np.array([[str(value) for value in row] for row in conf_matrix])
col1, col2 = st.columns(2)
with col1:
# Create the heatmap using seaborn
plt.figure(figsize=(3 , 3))
sns.heatmap(conf_matrix, annot=text_annotations, fmt="", cmap="Blues", cbar=False, square=True)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
st.pyplot(plt)
def prediction_page():
st.title("Get Your Diagnosis")
st.subheader("Symptoms Entry Form")
# Model Selection
model_choice = st.selectbox("Choose a Pre-trained Model", ["SVM - Linear", "SVM - Polynomial", "SVM - RBF",
"Random Forest","Random Forest Boosted", "Logistic Regression", "GDA"])
# Load pre-trained model
model = None
if model_choice == "SVM - Linear":
model = joblib.load('Model Training\svm_model_linear.pkl')
elif model_choice == "SVM - Polynomial":
model = joblib.load('Model Training\svm_model_poly.pkl')
elif model_choice == "SVM - RBF":
model = joblib.load('Model Training\svm_model_rbf.pkl')
elif model_choice == "Random Forest":
model = joblib.load('Model Training\rf_model.pkl')
elif model_choice == "Random Forest Boosted":
model = joblib.load('Model Training\rf_boosted.pkl')
elif model_choice == "Logistic Regression":
model = joblib.load('Model Training\lr_model.pkl')
elif model_choice == "GDA":
model = joblib.load('Model Training\gda.pkl')
with st.form(key="health_data_form"):
col1, col2, col3, col4 = st.columns(4)
with col1:
# Categorical features with dropdown selection
gender = st.selectbox("Gender", ["Male", "Female"], key="gender")
weight = st.number_input("Weight (kg)", min_value=0, step=1, key="weight")
cholesterol = st.number_input("Cholesterol (mg/dL)", min_value=0, step=1, key="cholesterol")
with col2:
family_history = st.selectbox("Family History of Illness", ["Yes", "No"], key="family_history")
bmi = st.number_input("BMI", min_value=0.0, step=0.1, key="bmi")
triglycerides = st.number_input("Triglycerides Level (mg/dL)", min_value=0, step=1, key="triglycerides")
with col3:
height = st.number_input("Height (cm)", min_value=0.0, step=0.1, key="height")
obese_status = st.selectbox("Obese/Non Obese", ["Obese", "Non-Obese"], key="obese_status")
ldl = st.number_input("LDL Level (mg/dL)", min_value=0.0, step=0.1, key="ldl")
with col4:
vldl = st.number_input("VLDL Level (mg/dL)", min_value=0.0, step=0.1, key="vldl")
# Submit button
submit_button = st.form_submit_button(label="Submit" )
if submit_button:
# Create a DataFrame directly with the user input data
data = pd.DataFrame({
"Gender": [gender],
"Family history": [family_history],
"Height": [height],
"Weight": [weight],
"BMI": [bmi],
"Obese/non obese": [obese_status],
"Cholesterol": [cholesterol],
"Triglycerides": [triglycerides],
"LDL level": [ldl],
"VLDL level": [vldl]
})
columns = ['Gender', 'Family history', 'Height', 'Weight', 'BMI', 'Obese/non obese', 'Cholesterol', 'Triglycerides level', 'LDL level', 'VLDL level']
data = data.reindex(columns=columns, fill_value=0)
categorical_columns = ['Gender','Family history','Obese/non obese']
numerical_columns = [col_name for col_name in data.columns if col_name not in categorical_columns]
# Encoding categorical data
encoder = joblib.load('Model Training\encoder.pkl')
data[categorical_columns] = encoder.transform(data[categorical_columns])
# Scaling the numeric features
scaler = joblib.load('Model Training\scaler.pkl')
data[numerical_columns] = scaler.transform(data[numerical_columns])
prediction = int(model.predict(data)[0])
st.write(f"### Predicted Diagnosis: {'Positive' if prediction == 1 else 'Negative'}")
def conclusion_page():
st.title("Conclusion")
st.markdown("""
## Key Takeaways
- Comprehensive EDA provides actionable insights into the data.
- Pre-trained machine learning models allow efficient predictions.
- The interactive app makes the analysis accessible and engaging.
Thank you for exploring this project!
""")
# Sidebar Navigation Menu with radio buttons for page selection
page = st.sidebar.radio("Navigation Menu", ["Introduction","Descriptive Statistics", "Data Analytics", "Model Evaluation", "Get Your Diagnosis", "Conclusion"])
if page == "Introduction":
introduction_page()
elif page == "Descriptive Statistics":
stats_page()
elif page == "Data Analytics":
eda_page()
elif page == "Model Evaluation":
model_page()
elif page == "Get Your Diagnosis":
prediction_page()
elif page == "Conclusion":
conclusion_page()
|