File size: 6,169 Bytes
a2da3c2
 
 
 
 
 
550071e
 
a2da3c2
 
 
 
 
 
 
 
550071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66979e3
550071e
 
 
 
 
a2da3c2
cd52496
01551ef
 
f5ee47a
01551ef
 
 
 
65084bf
01551ef
550071e
66979e3
01551ef
cd52496
65084bf
cd52496
01551ef
332b309
a2da3c2
 
 
 
 
 
 
 
 
 
 
 
3eaae45
a2da3c2
3eaae45
a2da3c2
 
 
 
 
 
 
 
 
 
01551ef
a2da3c2
 
 
 
 
 
 
0bf3aee
 
 
01551ef
cd52496
a2da3c2
 
 
 
 
 
 
 
 
4adb3f8
3eaae45
a2da3c2
 
 
 
 
01551ef
 
 
a2da3c2
 
550071e
a2da3c2
332b309
 
0bf3aee
 
 
332b309
 
 
 
 
 
a2da3c2
 
65084bf
 
 
 
 
 
 
 
 
332b309
a2da3c2
550071e
a2da3c2
550071e
a2da3c2
550071e
 
332b309
cd52496
550071e
a2da3c2
332b309
 
550071e
 
332b309
550071e
332b309
550071e
 
332b309
550071e
 
 
 
a2da3c2
550071e
 
332b309
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
from pathlib import Path
from shutil import move

import folium
import streamlit as st
from branca.element import MacroElement
from jinja2 import Template
from huggingface_hub import hf_hub_download
from PIL import Image
from streamlit_folium import st_folium

from osm_ai_helper.run_inference import run_inference
from osm_ai_helper.upload_osm import upload_osm


@st.fragment
def show_map():
    class LatLngPopup(MacroElement):
        _template = Template(
            """
                {% macro script(this, kwargs) %}
                    var {{this.get_name()}} = L.popup();
                    function latLngPop(e) {
                        {{this.get_name()}}
                            .setLatLng(e.latlng)
                            .setContent(e.latlng.lat.toFixed(4) + ", " + e.latlng.lng.toFixed(4))
                            .openOn({{this._parent.get_name()}});
                        }
                    {{this._parent.get_name()}}.on('click', latLngPop);
                {% endmacro %}
                """
        )

        def __init__(self):
            super().__init__()
            self._name = "LatLngPopup"

    m = folium.Map(location=[42.8075, -8.1519], zoom_start=8, tiles="OpenStreetMap")
    m.add_child(LatLngPopup())

    st_folium(m, height=400, width=800)


@st.fragment
def inference(lat_lon):
    with st.spinner("Downloading model..."):
        hf_hub_download(
            "mozilla-ai/swimming-pool-detector",
            filename="model.pt",
            repo_type="model",
            local_dir="models",
        )
    with st.spinner("Downloading image and Running inference..."):
        output_path, existing, new, missed = run_inference(
            yolo_model_file="models/model.pt",
            output_dir="/tmp/results",
            lat_lon=lat_lon,
            margin=2,
            save_full_images=False,
            batch_size=64,
        )
    return output_path, existing, new


@st.fragment
def handle_polygon(polygon):
    raw_image = Image.open(polygon.with_suffix(".png"))
    painted_image = Image.open(f"{polygon.parent}/{polygon.stem}_painted.png")

    st.subheader(f"Reviewing: {polygon.name}")

    col1, col2 = st.columns(2)

    with col1:
        st.image(raw_image, caption="Raw Image", use_container_width=True)
    with col2:
        st.image(painted_image, caption="Painted Image", use_container_width=True)

    if st.button("Keep Polygon", key=f"keep_{polygon}"):
        keep_folder = polygon.parent / "keep"
        keep_folder.mkdir(parents=True, exist_ok=True)
        move(polygon, keep_folder / polygon.name)
        st.success(f"Polygon moved to {keep_folder}")
    elif st.button("Discard Polygon", key=f"discard_{polygon.stem}"):
        discard_folder = polygon.parent / "discard"
        discard_folder.mkdir(parents=True, exist_ok=True)
        move(polygon, discard_folder / polygon.name)
        st.warning(f"Polygon moved to {discard_folder}")


@st.fragment
def upload_results(output_path):
    st.divider()
    st.header("Upload all polygons in `keep`")

    st.markdown(
        "The results will be uploaded using the [osm-ai-helper](https://www.openstreetmap.org/user/osm-ai-helper) profile."
    )
    st.markdown(
        "You can check the [Colab Notebook](ttps://colab.research.google.com/github/mozilla-ai/osm-ai-helper/blob/main/demo/run_inference_point.ipynb)"
        " and the [Authorization Guide](https://mozilla-ai.github.io/osm-ai-helper/authorization)"
        " to contribute with your own OpenStreetMap account."
    )
    contributor = st.text_input("(Optional) Indicate your name for attribution")
    if st.button("Upload all polygons in `keep`"):
        if contributor:
            comment = f"Add Swimming Pools. Contributed by {contributor}"
        else:
            comment = "Add Swimming Pools"

        changeset = upload_osm(
            results_dir=output_path / "keep",
            client_id=os.environ["OSM_CLIENT_ID"],
            client_secret=os.environ["OSM_CLIENT_SECRET"],
            comment=comment,
        )
        st.success(
            f"Changeset created: https://www.openstreetmap.org/changeset/{changeset}"
        )


st.title("OpenStreetMap AI Helper")

st.markdown(
    """
This demo was created with the repo [mozilla-ai/osm-ai-helper](https://github.com/mozilla-ai/osm-ai-helper).

It uses the model [mozilla-ai/swimming-pool-detector](https://huggingface.co/mozilla-ai/swimming-pool-detector).

You can check the [Create Dataset](https://colab.research.google.com/github/mozilla-ai//osm-ai-helper/blob/main/demo/create_dataset.ipyn)
and [Finetune Model](https://colab.research.google.com/github/mozilla-ai//osm-ai-helper/blob/main/demo/finetune_model.ipynb) notebooks to learn how to train your own model.
"""
)

st.divider()

st.subheader("Click on the map to select a latitude and longitude.")

st.markdown(
    """
The model will try to find swimming pools around this location.

Note that this model was trained with data from [Galicia](https://nominatim.openstreetmap.org/ui/details.html?osmtype=R&osmid=349036&class=boundary),
so it might fail to generalize to significantly different places.
"""
)

show_map()

lat_lon = st.text_input("Paste the copied (latitude, longitude)")

if st.button("Run Inference") and lat_lon:
    lat, lon = lat_lon.split(",")
    output_path, existing, new = inference(
        lat_lon=(float(lat.strip()), float(lon.strip()))
    )

    st.info(f"Found {len(existing)} swimming pools already in OpenStreetMaps.")

    if new:
        st.divider()
        st.header("Review `new` swimming pools")
        st.markdown(
            "Every `new` swimming pool will be displayed at the center of the image in `yellow`."
        )
        st.markdown(
            "Swimming pools in other colors are those already existing in OpenStreetMap and they just "
            "indicate whether the model has found them (`green`) or missed them (`red`)."
        )
        for new in Path(output_path).glob("*.json"):
            handle_polygon(new)

        upload_results(output_path)
    else:
        st.warning("No `new` swimming pools were found. Try a different location.")