pierreguillou commited on
Commit
5328a20
·
1 Parent(s): d2924de

Update files/functions.py

Browse files
Files changed (1) hide show
  1. files/functions.py +516 -0
files/functions.py CHANGED
@@ -178,3 +178,519 @@ id2label_layoutxlm = model_layoutxlm.config.id2label
178
  label2id_layoutxlm = model_layoutxlm.config.label2id
179
  num_labels_layoutxlm = len(id2label_layoutxlm)
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  label2id_layoutxlm = model_layoutxlm.config.label2id
179
  num_labels_layoutxlm = len(id2label_layoutxlm)
180
 
181
+ ## PDf processing
182
+
183
+ # get filename and images of PDF pages
184
+ def pdf_to_images(uploaded_pdf):
185
+
186
+ # Check if None object
187
+ if uploaded_pdf is None:
188
+ path_to_file = pdf_blank
189
+ filename = path_to_file.replace(examples_dir,"")
190
+ msg = "Invalid PDF file."
191
+ images = [Image.open(image_blank)]
192
+ else:
193
+ # path to the uploaded PDF
194
+ path_to_file = uploaded_pdf.name
195
+ filename = path_to_file# .replace("/tmp/","")
196
+
197
+ try:
198
+ PdfReader(path_to_file)
199
+ except PdfReadError:
200
+ path_to_file = pdf_blank
201
+ filename = path_to_file.replace(examples_dir,"")
202
+ msg = "Invalid PDF file."
203
+ images = [Image.open(image_blank)]
204
+ else:
205
+ try:
206
+ # images = convert_from_path(path_to_file, last_page=max_imgboxes)
207
+
208
+ pdf = pdfium.PdfDocument(str(filename))
209
+ version = pdf.get_version() # get the PDF standard version
210
+ n_pages = len(pdf) # get the number of pages in the document
211
+ last_page = max_imgboxes
212
+ page_indices = [i for i in range(last_page)] # pages until last_page
213
+ images = list(pdf.render(
214
+ pdfium.PdfBitmap.to_pil,
215
+ page_indices = page_indices,
216
+ scale = 300/72, # 300dpi resolution
217
+ ))
218
+
219
+ num_imgs = len(images)
220
+ msg = f'The PDF "{filename}" was converted into {num_imgs} images.'
221
+ except:
222
+ msg = f'Error with the PDF "{filename}": it was not converted into images.'
223
+ images = [Image.open(image_wo_content)]
224
+
225
+ return filename, msg, images
226
+
227
+ # Extraction of image data (text and bounding boxes)
228
+ def extraction_data_from_image(images):
229
+
230
+ num_imgs = len(images)
231
+
232
+ if num_imgs > 0:
233
+
234
+ # https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
235
+ custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
236
+ results, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes, images_pixels = dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict()
237
+ images_ids_list, texts_lines_list, texts_pars_list, texts_lines_par_list, par_boxes_list, line_boxes_list, lines_par_boxes_list, images_list, images_pixels_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
238
+
239
+ try:
240
+ for i,image in enumerate(images):
241
+ # image preprocessing
242
+ # https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
243
+ img = image.copy()
244
+ factor, path_to_img = set_image_dpi_resize(img) # Rescaling to 300dpi
245
+ img = Image.open(path_to_img)
246
+ img = np.array(img, dtype='uint8') # convert PIL to cv2
247
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
248
+ ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
249
+
250
+ # OCR PyTesseract | get langs of page
251
+ txt = pytesseract.image_to_string(img, config=custom_config)
252
+ txt = txt.strip().lower()
253
+ txt = re.sub(r" +", " ", txt) # multiple space
254
+ txt = re.sub(r"(\n\s*)+\n+", "\n", txt) # multiple line
255
+ # txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
256
+ try:
257
+ langs = detect_langs(txt)
258
+ langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
259
+ langs_string = '+'.join(langs)
260
+ except:
261
+ langs_string = "eng"
262
+ langs_string += '+osd'
263
+ custom_config = f'--oem 3 --psm 3 -l {langs_string}' # default config PyTesseract: --oem 3 --psm 3
264
+
265
+ # OCR PyTesseract | get data
266
+ results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
267
+ # results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
268
+
269
+ # get image pixels
270
+ images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
271
+
272
+ texts_lines[i], texts_pars[i], texts_lines_par[i], row_indexes[i], par_boxes[i], line_boxes[i], lines_par_boxes[i] = get_data_paragraph(results[i], factor, conf_min=0)
273
+ texts_lines_list.append(texts_lines[i])
274
+ texts_pars_list.append(texts_pars[i])
275
+ texts_lines_par_list.append(texts_lines_par[i])
276
+ par_boxes_list.append(par_boxes[i])
277
+ line_boxes_list.append(line_boxes[i])
278
+ lines_par_boxes_list.append(lines_par_boxes[i])
279
+ images_ids_list.append(i)
280
+ images_pixels_list.append(images_pixels[i])
281
+ images_list.append(images[i])
282
+ page_no_list.append(i)
283
+ num_pages_list.append(num_imgs)
284
+
285
+ except:
286
+ print(f"There was an error within the extraction of PDF text by the OCR!")
287
+ else:
288
+ from datasets import Dataset
289
+ dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts_line": texts_lines_list, "texts_par": texts_pars_list, "texts_lines_par": texts_lines_par_list, "bboxes_par": par_boxes_list, "bboxes_lines_par":lines_par_boxes_list})
290
+
291
+
292
+ # print(f"The text data was successfully extracted by the OCR!")
293
+
294
+ return dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
295
+
296
+ ## Inference
297
+
298
+ def prepare_inference_features_paragraph(example, tokenizer, max_length, cls_box, sep_box):
299
+
300
+ images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
301
+
302
+ # get batch
303
+ # batch_page_hash = example["page_hash"]
304
+ batch_images_ids = example["images_ids"]
305
+ batch_images = example["images"]
306
+ batch_images_pixels = example["images_pixels"]
307
+ batch_bboxes_par = example["bboxes_par"]
308
+ batch_texts_par = example["texts_par"]
309
+ batch_images_size = [image.size for image in batch_images]
310
+
311
+ batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
312
+
313
+ # add a dimension if not a batch but only one image
314
+ if not isinstance(batch_images_ids, list):
315
+ batch_images_ids = [batch_images_ids]
316
+ batch_images = [batch_images]
317
+ batch_images_pixels = [batch_images_pixels]
318
+ batch_bboxes_par = [batch_bboxes_par]
319
+ batch_texts_par = [batch_texts_par]
320
+ batch_width, batch_height = [batch_width], [batch_height]
321
+
322
+ # process all images of the batch
323
+ for num_batch, (image_id, image_pixels, boxes, texts_par, width, height) in enumerate(zip(batch_images_ids, batch_images_pixels, batch_bboxes_par, batch_texts_par, batch_width, batch_height)):
324
+ tokens_list = []
325
+ bboxes_list = []
326
+
327
+ # add a dimension if only on image
328
+ if not isinstance(texts_par, list):
329
+ texts_par, boxes = [texts_par], [boxes]
330
+
331
+ # convert boxes to original
332
+ normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
333
+
334
+ # sort boxes with texts
335
+ # we want sorted lists from top to bottom of the image
336
+ boxes, texts_par = sort_data_wo_labels(normalize_bboxes_par, texts_par)
337
+
338
+ count = 0
339
+ for box, text_par in zip(boxes, texts_par):
340
+ tokens_par = tokenizer.tokenize(text_par)
341
+ num_tokens_par = len(tokens_par) # get number of tokens
342
+ tokens_list.extend(tokens_par)
343
+ bboxes_list.extend([box] * num_tokens_par) # number of boxes must be the same as the number of tokens
344
+
345
+ # use of return_overflowing_tokens=True / stride=doc_stride
346
+ # to get parts of image with overlap
347
+ # source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
348
+ encodings = tokenizer(" ".join(texts_par),
349
+ truncation=True,
350
+ padding="max_length",
351
+ max_length=max_length,
352
+ stride=doc_stride,
353
+ return_overflowing_tokens=True,
354
+ return_offsets_mapping=True
355
+ )
356
+
357
+ otsm = encodings.pop("overflow_to_sample_mapping")
358
+ offset_mapping = encodings.pop("offset_mapping")
359
+
360
+ # Let's label those examples and get their boxes
361
+ sequence_length_prev = 0
362
+ for i, offsets in enumerate(offset_mapping):
363
+ # truncate tokens, boxes and labels based on length of chunk - 2 (special tokens <s> and </s>)
364
+ sequence_length = len(encodings.input_ids[i]) - 2
365
+ if i == 0: start = 0
366
+ else: start += sequence_length_prev - doc_stride
367
+ end = start + sequence_length
368
+ sequence_length_prev = sequence_length
369
+
370
+ # get tokens, boxes and labels of this image chunk
371
+ bb = [cls_box] + bboxes_list[start:end] + [sep_box]
372
+
373
+ # as the last chunk can have a length < max_length
374
+ # we must to add [tokenizer.pad_token] (tokens), [sep_box] (boxes) and [-100] (labels)
375
+ if len(bb) < max_length:
376
+ bb = bb + [sep_box] * (max_length - len(bb))
377
+
378
+ # append results
379
+ input_ids_list.append(encodings["input_ids"][i])
380
+ attention_mask_list.append(encodings["attention_mask"][i])
381
+ bb_list.append(bb)
382
+ images_ids_list.append(image_id)
383
+ chunks_ids_list.append(i)
384
+ images_pixels_list.append(image_pixels)
385
+
386
+ return {
387
+ "images_ids": images_ids_list,
388
+ "chunk_ids": chunks_ids_list,
389
+ "input_ids": input_ids_list,
390
+ "attention_mask": attention_mask_list,
391
+ "normalized_bboxes": bb_list,
392
+ "images_pixels": images_pixels_list
393
+ }
394
+
395
+ from torch.utils.data import Dataset
396
+
397
+ class CustomDataset(Dataset):
398
+ def __init__(self, dataset, tokenizer):
399
+ self.dataset = dataset
400
+ self.tokenizer = tokenizer
401
+
402
+ def __len__(self):
403
+ return len(self.dataset)
404
+
405
+ def __getitem__(self, idx):
406
+ # get item
407
+ example = self.dataset[idx]
408
+ encoding = dict()
409
+ encoding["images_ids"] = example["images_ids"]
410
+ encoding["chunk_ids"] = example["chunk_ids"]
411
+ encoding["input_ids"] = example["input_ids"]
412
+ encoding["attention_mask"] = example["attention_mask"]
413
+ encoding["bbox"] = example["normalized_bboxes"]
414
+ encoding["images_pixels"] = example["images_pixels"]
415
+
416
+ return encoding
417
+
418
+ import torch.nn.functional as F
419
+
420
+ # get predictions at token level
421
+ def predictions_token_level(images, custom_encoded_dataset, model_id, model):
422
+
423
+ num_imgs = len(images)
424
+ if num_imgs > 0:
425
+
426
+ chunk_ids, input_ids, bboxes, pixels_values, outputs, token_predictions = dict(), dict(), dict(), dict(), dict(), dict()
427
+ images_ids_list = list()
428
+
429
+ for i,encoding in enumerate(custom_encoded_dataset):
430
+
431
+ # get custom encoded data
432
+ image_id = encoding['images_ids']
433
+ chunk_id = encoding['chunk_ids']
434
+ input_id = torch.tensor(encoding['input_ids'])[None]
435
+ attention_mask = torch.tensor(encoding['attention_mask'])[None]
436
+ bbox = torch.tensor(encoding['bbox'])[None]
437
+ pixel_values = torch.tensor(encoding["images_pixels"])
438
+
439
+ # save data in dictionnaries
440
+ if image_id not in images_ids_list: images_ids_list.append(image_id)
441
+
442
+ if image_id in chunk_ids: chunk_ids[image_id].append(chunk_id)
443
+ else: chunk_ids[image_id] = [chunk_id]
444
+
445
+ if image_id in input_ids: input_ids[image_id].append(input_id)
446
+ else: input_ids[image_id] = [input_id]
447
+
448
+ if image_id in bboxes: bboxes[image_id].append(bbox)
449
+ else: bboxes[image_id] = [bbox]
450
+
451
+ if image_id in pixels_values: pixels_values[image_id].append(pixel_values)
452
+ else: pixels_values[image_id] = [pixel_values]
453
+
454
+ # get prediction with forward pass
455
+ with torch.no_grad():
456
+
457
+ if model_id == model_id_lilt:
458
+ output = model(
459
+ input_ids=input_id.to(device),
460
+ attention_mask=attention_mask.to(device),
461
+ bbox=bbox.to(device),
462
+ )
463
+ elif model_id == model_id_layoutxlm:
464
+ output = model(
465
+ input_ids=input_id.to(device),
466
+ attention_mask=attention_mask.to(device),
467
+ bbox=bbox.to(device),
468
+ image=pixel_values.to(device)
469
+ )
470
+
471
+ # save probabilities of predictions in dictionnary
472
+ if image_id in outputs: outputs[image_id].append(F.softmax(output.logits.squeeze(), dim=-1))
473
+ else: outputs[image_id] = [F.softmax(output.logits.squeeze(), dim=-1)]
474
+
475
+ return outputs, images_ids_list, chunk_ids, input_ids, bboxes
476
+
477
+ else:
478
+ print("An error occurred while getting predictions!")
479
+
480
+ from functools import reduce
481
+
482
+ # Get predictions (line level)
483
+ def predictions_paragraph_level(max_length, tokenizer, id2label, dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes, cls_box, sep_box):
484
+
485
+ ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
486
+ bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
487
+
488
+ if len(images_ids_list) > 0:
489
+
490
+ for i, image_id in enumerate(images_ids_list):
491
+
492
+ # get image information
493
+ images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
494
+ image = images_list[0]
495
+ width, height = image.size
496
+
497
+ # get data
498
+ chunk_ids_list = chunk_ids[image_id]
499
+ outputs_list = outputs[image_id]
500
+ input_ids_list = input_ids[image_id]
501
+ bboxes_list = bboxes[image_id]
502
+
503
+ # create zeros tensors
504
+ ten_probs = torch.zeros((outputs_list[0].shape[0] - 2)*len(outputs_list), outputs_list[0].shape[1])
505
+ ten_input_ids = torch.ones(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list)), dtype =int)
506
+ ten_bboxes = torch.zeros(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list), 4), dtype =int)
507
+
508
+ if len(outputs_list) > 1:
509
+
510
+ for num_output, (output, input_id, bbox) in enumerate(zip(outputs_list, input_ids_list, bboxes_list)):
511
+ start = num_output*(max_length - 2) - max(0,num_output)*doc_stride
512
+ end = start + (max_length - 2)
513
+
514
+ if num_output == 0:
515
+ ten_probs[start:end,:] += output[1:-1]
516
+ ten_input_ids[:,start:end] = input_id[:,1:-1]
517
+ ten_bboxes[:,start:end,:] = bbox[:,1:-1,:]
518
+ else:
519
+ ten_probs[start:start + doc_stride,:] += output[1:1 + doc_stride]
520
+ ten_probs[start:start + doc_stride,:] = ten_probs[start:start + doc_stride,:] * 0.5
521
+ ten_probs[start + doc_stride:end,:] += output[1 + doc_stride:-1]
522
+
523
+ ten_input_ids[:,start:start + doc_stride] = input_id[:,1:1 + doc_stride]
524
+ ten_input_ids[:,start + doc_stride:end] = input_id[:,1 + doc_stride:-1]
525
+
526
+ ten_bboxes[:,start:start + doc_stride,:] = bbox[:,1:1 + doc_stride,:]
527
+ ten_bboxes[:,start + doc_stride:end,:] = bbox[:,1 + doc_stride:-1,:]
528
+
529
+ else:
530
+ ten_probs += outputs_list[0][1:-1]
531
+ ten_input_ids = input_ids_list[0][:,1:-1]
532
+ ten_bboxes = bboxes_list[0][:,1:-1]
533
+
534
+ ten_probs_list, ten_input_ids_list, ten_bboxes_list = ten_probs.tolist(), ten_input_ids.tolist()[0], ten_bboxes.tolist()[0]
535
+ bboxes_list = list()
536
+ input_ids_dict, probs_dict = dict(), dict()
537
+ bbox_prev = [-100, -100, -100, -100]
538
+ for probs, input_id, bbox in zip(ten_probs_list, ten_input_ids_list, ten_bboxes_list):
539
+ bbox = denormalize_box(bbox, width, height)
540
+ if bbox != bbox_prev and bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
541
+ bboxes_list.append(bbox)
542
+ input_ids_dict[str(bbox)] = [input_id]
543
+ probs_dict[str(bbox)] = [probs]
544
+ elif bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
545
+ input_ids_dict[str(bbox)].append(input_id)
546
+ probs_dict[str(bbox)].append(probs)
547
+ bbox_prev = bbox
548
+
549
+ probs_bbox = dict()
550
+ for i,bbox in enumerate(bboxes_list):
551
+ probs = probs_dict[str(bbox)]
552
+ probs = np.array(probs).T.tolist()
553
+
554
+ probs_label = list()
555
+ for probs_list in probs:
556
+ prob_label = reduce(lambda x, y: x*y, probs_list)
557
+ prob_label = prob_label**(1./(len(probs_list))) # normalization
558
+ probs_label.append(prob_label)
559
+ max_value = max(probs_label)
560
+ max_index = probs_label.index(max_value)
561
+ probs_bbox[str(bbox)] = max_index
562
+
563
+ bboxes_list_dict[image_id] = bboxes_list
564
+ input_ids_dict_dict[image_id] = input_ids_dict
565
+ probs_dict_dict[image_id] = probs_bbox
566
+
567
+ df[image_id] = pd.DataFrame()
568
+ df[image_id]["bboxes"] = bboxes_list
569
+ df[image_id]["texts"] = [tokenizer.decode(input_ids_dict[str(bbox)]) for bbox in bboxes_list]
570
+ df[image_id]["labels"] = [id2label[probs_bbox[str(bbox)]] for bbox in bboxes_list]
571
+
572
+ return probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df
573
+
574
+ else:
575
+ print("An error occurred while getting predictions!")
576
+
577
+ # Get labeled images with lines bounding boxes
578
+ def get_labeled_images(id2label, dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
579
+
580
+ labeled_images = list()
581
+
582
+ for i, image_id in enumerate(images_ids_list):
583
+
584
+ # get image
585
+ images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
586
+ image = images_list[0]
587
+ width, height = image.size
588
+
589
+ # get predicted boxes and labels
590
+ bboxes_list = bboxes_list_dict[image_id]
591
+ probs_bbox = probs_dict_dict[image_id]
592
+
593
+ draw = ImageDraw.Draw(image)
594
+ # https://stackoverflow.com/questions/66274858/choosing-a-pil-imagefont-by-font-name-rather-than-filename-and-cross-platform-f
595
+ font = font_manager.FontProperties(family='sans-serif', weight='bold')
596
+ font_file = font_manager.findfont(font)
597
+ font_size = 30
598
+ font = ImageFont.truetype(font_file, font_size)
599
+
600
+ for bbox in bboxes_list:
601
+ predicted_label = id2label[probs_bbox[str(bbox)]]
602
+ draw.rectangle(bbox, outline=label2color[predicted_label])
603
+ draw.text((bbox[0] + 10, bbox[1] - font_size), text=predicted_label, fill=label2color[predicted_label], font=font)
604
+
605
+ labeled_images.append(image)
606
+
607
+ return labeled_images
608
+
609
+ # get data of encoded chunk
610
+ def get_encoded_chunk_inference(tokenizer, dataset, encoded_dataset, index_chunk=None):
611
+
612
+ # get datasets
613
+ example = dataset
614
+ encoded_example = encoded_dataset
615
+
616
+ # get randomly a document in dataset
617
+ if index_chunk == None: index_chunk = random.randint(0, len(encoded_example)-1)
618
+ encoded_example = encoded_example[index_chunk]
619
+ encoded_image_ids = encoded_example["images_ids"]
620
+
621
+ # get the image
622
+ example = example.filter(lambda example: example["images_ids"] == encoded_image_ids)[0]
623
+ image = example["images"] # original image
624
+ width, height = image.size
625
+ page_no = example["page_no"]
626
+ num_pages = example["num_pages"]
627
+
628
+ # get boxes, texts, categories
629
+ bboxes, input_ids = encoded_example["normalized_bboxes"][1:-1], encoded_example["input_ids"][1:-1]
630
+ bboxes = [denormalize_box(bbox, width, height) for bbox in bboxes]
631
+ num_tokens = len(input_ids) + 2
632
+
633
+ # get unique bboxes and corresponding labels
634
+ bboxes_list, input_ids_list = list(), list()
635
+ input_ids_dict = dict()
636
+ bbox_prev = [-100, -100, -100, -100]
637
+ for i, (bbox, input_id) in enumerate(zip(bboxes, input_ids)):
638
+ if bbox != bbox_prev:
639
+ bboxes_list.append(bbox)
640
+ input_ids_dict[str(bbox)] = [input_id]
641
+ else:
642
+ input_ids_dict[str(bbox)].append(input_id)
643
+
644
+ # start_indexes_list.append(i)
645
+ bbox_prev = bbox
646
+
647
+ # do not keep "</s><pad><pad>..."
648
+ if input_ids_dict[str(bboxes_list[-1])][0] == (tokenizer.convert_tokens_to_ids('</s>')):
649
+ del input_ids_dict[str(bboxes_list[-1])]
650
+ bboxes_list = bboxes_list[:-1]
651
+
652
+ # get texts by line
653
+ input_ids_list = input_ids_dict.values()
654
+ texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
655
+
656
+ # display DataFrame
657
+ df = pd.DataFrame({"texts": texts_list, "input_ids": input_ids_list, "bboxes": bboxes_list})
658
+
659
+ return image, df, num_tokens, page_no, num_pages
660
+
661
+ # display chunk of PDF image and its data
662
+ def display_chunk_lines_inference(dataset, encoded_dataset, index_chunk=None):
663
+
664
+ # get image and image data
665
+ image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(dataset, encoded_dataset, index_chunk=index_chunk)
666
+
667
+ # get data from dataframe
668
+ input_ids = df["input_ids"]
669
+ texts = df["texts"]
670
+ bboxes = df["bboxes"]
671
+
672
+ print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
673
+
674
+ # display image with bounding boxes
675
+ print(">> PDF image with bounding boxes of lines\n")
676
+ draw = ImageDraw.Draw(image)
677
+
678
+ labels = list()
679
+ for box, text in zip(bboxes, texts):
680
+ color = "red"
681
+ draw.rectangle(box, outline=color)
682
+
683
+ # resize image to original
684
+ width, height = image.size
685
+ image = image.resize((int(0.5*width), int(0.5*height)))
686
+
687
+ # convert to cv and display
688
+ img = np.array(image, dtype='uint8') # PIL to cv2
689
+ cv2_imshow(img)
690
+ cv2.waitKey(0)
691
+
692
+ # display image dataframe
693
+ print("\n>> Dataframe of annotated lines\n")
694
+ cols = ["texts", "bboxes"]
695
+ df = df[cols]
696
+ display(df)