File size: 7,103 Bytes
9b3b1ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import geopandas as gpd
import leafmap.foliumap as leafmap
from PIL import Image
import rasterio
from rasterio.windows import Window
from tqdm import tqdm
import io
import zipfile
import os
import albumentations as albu
import segmentation_models_pytorch as smp
from albumentations.pytorch.transforms import ToTensorV2
from shapely.geometry import shape
from shapely.ops import unary_union
from rasterio.features import shapes
import torch
import numpy as np

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'

# Load and prepare the model
def load_model():
    model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE)
    model.eval().float()
    return model

best_model = load_model()

def to_tensor(x, **kwargs):
    return x.astype('float32')

# Preprocessing
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)

def get_preprocessing(tile_size):
    _transform = [
        albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
        albu.Lambda(image=preprocessing_fn),
        albu.Lambda(image=to_tensor, mask=to_tensor),
        ToTensorV2(),
    ]
    return albu.Compose(_transform)

def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
    preprocess = get_preprocessing(tile_size)
    tiles = []

    with rasterio.open(map_file) as src:
        height = src.height
        width = src.width
        effective_tile_size = tile_size - overlap

        for y in stqdm(range(0, height, effective_tile_size)):
            for x in range(0, width, effective_tile_size):
                batch_images = []
                batch_metas = []

                for i in range(batch_size):
                    curr_y = y + (i * effective_tile_size)
                    if curr_y >= height:
                        break

                    window = Window(x, curr_y, tile_size, tile_size)
                    out_image = src.read(window=window)

                    if out_image.shape[0] == 1:
                        out_image = np.repeat(out_image, 3, axis=0)
                    elif out_image.shape[0] != 3:
                        raise ValueError("The number of channels in the image is not supported")

                    out_image = np.transpose(out_image, (1, 2, 0))
                    tile_image = Image.fromarray(out_image.astype(np.uint8))

                    out_meta = src.meta.copy()
                    out_meta.update({
                        "driver": "GTiff",
                        "height": tile_size,
                        "width": tile_size,
                        "transform": rasterio.windows.transform(window, src.transform)
                    })

                    tile_image = np.array(tile_image)
                    preprocessed_tile = preprocess(image=tile_image)['image']
                    batch_images.append(preprocessed_tile)
                    batch_metas.append(out_meta)

                if not batch_images:
                    break

                batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
                with torch.no_grad():
                    batch_masks = model(batch_tensor)

                batch_masks = torch.sigmoid(batch_masks)
                batch_masks = (batch_masks > threshold).float()

                for j, mask_tensor in enumerate(batch_masks):
                    mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
                                                                   size=(tile_size, tile_size), mode='bilinear',
                                                                   align_corners=False).squeeze(0)

                    mask_array = mask_resized.squeeze().cpu().numpy()

                    if mask_array.any() == 1:
                        tiles.append([mask_array, batch_metas[j]])

    return tiles

def create_vector_mask(tiles, output_path):
    all_polygons = []
    for mask_array, meta in tiles:
        # Ensure mask is binary
        mask_array = (mask_array > 0).astype(np.uint8)

        # Get shapes from the mask
        mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))

        # Convert shapes to Shapely polygons
        polygons = [shape(geom) for geom, value in mask_shapes if value == 1]

        all_polygons.extend(polygons)
    # Perform union of all polygons
    union_polygon = unary_union(all_polygons)
    # Create a GeoDataFrame
    gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
    # Save to file
    gdf.to_file(output_path)

    # Calculate area in square meters
    area_m2 = gdf.to_crs(epsg=3857).area.sum()

    return gdf, area_m2

def display_map(shapefile_path, tif_path):
    # Create a leafmap centered on the shapefile bounds
    mask = gpd.read_file(shapefile_path)
    if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
        mask = mask.to_crs('EPSG:3857')
    bounds = mask.total_bounds
    center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
    m = leafmap.Map(center=[center[1], center[0]], zoom=10, crs='EPSG3857')
    m.add_gdf(mask, layer_name="Shapefile Mask")
    m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
    return m

def process_file(tif_file, resolution, overlap, threshold):
    with open("temp.tif", "wb") as f:
        f.write(tif_file.read())

    best_model.float()
    tiles = extract_tiles("temp.tif", best_model, tile_size=resolution, overlap=overlap, batch_size=4, threshold=threshold)

    output_path = "output_mask.shp"
    result_gdf, area_m2 = create_vector_mask(tiles, output_path)

    # Create zip file for shapefile
    shp_files = [f for f in os.listdir() if f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
    with io.BytesIO() as zip_buffer:
        with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
            for file in shp_files:
                zip_file.write(file)
        zip_buffer.seek(0)
        with open("output_mask.zip", "wb") as f:
            f.write(zip_buffer.getvalue())

    # Display map
    map_html = display_map("output_mask.shp", "temp.tif").to_html()

    # Clean up temporary files
    os.remove("temp.tif")
    for file in shp_files:
        os.remove(file)

    return f"Total area occupied by PV panels: {area_m2:.4f} m^2", "output_mask.zip", map_html

iface = gr.Interface(
    fn=process_file,
    inputs=[
        gr.File(label="Upload TIF file"),
        gr.Radio([512, 1024], label="Processing resolution", value=512),
        gr.Slider(50, 150, value=100, step=25, label="Overlap"),
        gr.Slider(0.1, 0.9, value=0.6, step=0.01, label="Threshold")
    ],
    outputs=[
        gr.Textbox(label="Result"),
        gr.File(label="Download Shapefile"),
        gr.HTML(label="Map")
    ],
    title="PV Segmentor",
    description="Upload a TIF file to process and segment PV panels."
)

if __name__ == "__main__":
    iface.launch()