Spaces:
Runtime error
Runtime error
File size: 13,970 Bytes
732e0d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import numpy as np
import pandas as pd
from loading.loadpickledataset import LoadPickleDataSet
from preprocessing.augmentation.gaussiannoise import GaussianNoise
from preprocessing.augmentation.imurotation import IMURotation
from preprocessing.filter_imu import FilterIMU
from preprocessing.filter_opensim import FilterOpenSim
from preprocessing.remove_outlier import remove_outlier
from preprocessing.resample import Resample
from preprocessing.segmentation.fixwindowsegmentation import FixWindowSegmentation
from preprocessing.segmentation.gaitcyclesegmentation import GaitCycleSegmentation
from preprocessing.segmentation.zeropaddingsegmentation import ZeroPaddingSegmentation
class DataSet:
def __init__(self, config, load_dataset=True):
self.config = config
self.x = []
self.y = []
self.labels = []
self.selected_trial_type = config['selected_trial_type']
self.selected_activity_label = config['selected_activity_label']
self.segmentation_method = config['segmentation_method']
if self.config['gc_dataset']:
self.segmentation_method = 'zeropadding'
self.resample = config['resample']
self.n_sample = len(self.y)
if load_dataset:
self.load_dataset()
self.train_subjects = config['train_subjects']
self.test_subjects = config['test_subjects']
self.train_activity = config['train_activity']
self.test_activity = config['test_activity']
# self.winsize = 128
self.train_dataset = {}
self.test_dataset = {}
def load_dataset(self):
getdata_handler = LoadPickleDataSet(self.config)
x, y, labels = getdata_handler.run_get_dataset()
self.x, self.y, self.labels = self.run_activity_based_filter(x, y, labels)
self._preprocess()
def _preprocess(self):
self.x, self.y, self.labels = remove_outlier(self.x, self.y, self.labels)
if self.resample:
self.x, self.y, self.labels = self.run_resample_signal(self.x, self.y, self.labels)
if self.config['opensim_filter']:
filteropensim_handler = FilterOpenSim(self.y, lowcut=6, fs=100, order=2)
self.y = filteropensim_handler.run_lowpass_filter()
if self.config['imu_filter']:
filterimu_handler = FilterIMU(self.x, lowcut=10, fs=100, order=2)
self.x = filterimu_handler.run_lowpass_filter()
def run_resample_signal(self, x, y, labels):
resample_handler = Resample(x, y, labels, 200, 100)
x, y, labels = resample_handler._run_resample()
return x, y, labels
def run_segmentation(self, x, y, labels):
if self.segmentation_method == 'fixedwindow':
segmentation_handler = FixWindowSegmentation(x, y, labels, winsize=self.config['target_padding_length'], overlap=0.5, start_over=True)
self.x, self.y, self.labels = segmentation_handler._run_segmentation()
elif self.segmentation_method == 'zeropadding':
segmentation_handler = ZeroPaddingSegmentation(x, y, labels, target_padding_length=self.config['target_padding_length'], start_over=True)
self.x, self.y, self.labels = segmentation_handler._run_segmentation()
elif self.segmentation_method == 'gaitcycle':
segmentation_handler = GaitCycleSegmentation(x, y, labels, winsize=128, overlap=0.5, start_over=True)
self.x, self.y, self.labels = segmentation_handler._run_segmentation()
if self.config['opensim_filter']:
filteropensim_handler = FilterOpenSim(self.y, lowcut=6, fs=100, order=2)
self.y = filteropensim_handler.run_lowpass_filter()
if self.config['rotation']:
imu_rotation_handler = IMURotation(knom=10)
self.x, self.y, self.labels = imu_rotation_handler.run_rotation(self.x.copy(), self.y.copy(), self.labels.copy())
if self.config['gaussian_noise']:
gaussian_noise_handler = GaussianNoise(0, .05)
self.x, self.y, self.labels = gaussian_noise_handler.run_add_noise(self.x, self.y, self.labels)
del x, y, labels
return self.x, self.y, self.labels
def run_activity_based_filter(self, x, y, label):
'''
:return: updated x, y, and labels which contains only the selected labels (activity section)
'''
updated_x = []
update_y = []
updated_label = []
s = 0
for ll, xx, yy, in zip(label, x, y):
# print(ll['subject'][0])
# print(ll['trialNum'][0])
if self.config['dataset_name']=='camargo' and ll['trialType'].isin(self.selected_trial_type).all() and self.selected_activity_label == ['all_idle']:
l_temp = ll[ll['trialType'].isin(self.selected_trial_type)]
l_temp_index = l_temp.index.values
xx_temp = xx[l_temp_index]
yy_temp = yy[l_temp_index]
updated_x.append(xx_temp)
update_y.append(yy_temp)
updated_label.append(l_temp)
elif self.config['dataset_name']=='camargo' and ll['trialType'].isin(self.selected_trial_type).all() and self.selected_activity_label == ['all']:
update_selected_activity_label = list(ll['Label'].unique())
update_selected_activity_label = [i for i in update_selected_activity_label if i not in ['idle', 'stand']]
l_temp = ll[(ll['trialType'].isin(self.selected_trial_type)) & (ll['Label'].isin(update_selected_activity_label))]
l_temp_index = l_temp.index.values
xx_temp = xx[l_temp_index]
yy_temp = yy[l_temp_index]
updated_x.append(xx_temp)
update_y.append(yy_temp)
updated_label.append(l_temp)
elif self.config['dataset_name'] == 'camargo' and ll['trialType'].isin(self.selected_trial_type).all() and self.selected_activity_label == ['all_split']:
ll_temp = ll.copy()
ll_temp['trialType2'] =ll_temp['Label']
if ll['trialType'][0] =='levelground':
# get the turn index if it's there
turn1_indx = ll_temp[ll_temp['Label'] == 'turn1'].index.values
turn2_indx = ll_temp[ll_temp['Label'] == 'turn2'].index.values
# check which turn is turn 1
if turn1_indx[0]<turn2_indx[0]:
pass
else:
turn2_indx_temp = turn1_indx
turn1_indx = turn2_indx
turn2_indx = turn2_indx_temp
# devide into two segments
seg1 = ll_temp.iloc[0:turn1_indx[-1]+1]
seg2 = ll_temp.iloc[turn2_indx[0]:]
seg1_trialType2 = seg1['trialType2'].replace({'idle': 'idle', 'stand': 'idle', 'turn1': 'idle', 'turn2': 'idle',
'stand-walk':'levelground1', 'walk':'levelground1',
'walk-stand': 'levelground1'})
seg2_trialType2 = seg2['trialType2'].replace({'idle': 'idle', 'stand': 'idle', 'turn1': 'idle','turn2': 'idle',
'stand-walk':'levelground2', 'walk':'levelground2',
'walk-stand': 'levelground2'})
ll_temp['trialType2'] = pd.concat([seg1_trialType2, seg2_trialType2])
ll = ll_temp
elif ll['trialType'][0] =='ramp':
ll_temp['trialType2'] = ll_temp['trialType2'].replace({'idle': 'idle',
'walk-rampascent': 'rampascent', 'rampascent':'rampascent','rampascent-walk': 'rampascent',
'walk-rampdescent': 'rampdescent', 'rampdescent':'rampdescent','rampdescent-walk': 'rampdescent'})
ll = ll_temp
elif ll['trialType'][0] == 'stair':
ll_temp['trialType2'] = ll_temp['trialType2'].replace({'idle': 'idle',
'walk-stairascent': 'stairascent', 'stairascent':'stairascent','stairascent-walk': 'stairascent',
'walk-stairdescent': 'stairdescent', 'stairdescent':'stairdescent','stairdescent-walk': 'stairdescent'})
ll = ll_temp
update_selected_activity_label = list(ll['trialType2'].unique())
# remove stand, idle, turn1, turn2 samples
update_selected_activity_label = [i for i in update_selected_activity_label if
i not in ['idle']]
for activity_label in update_selected_activity_label:
# if trial type == levelground ->save stand-walk and walk into one trial and walk-stand into another trial. all samples would be continues
# if ramp or stair--> save trial for ascent and descent individually
if isinstance(activity_label, str):
l_temp = ll[(ll['trialType'].isin(self.selected_trial_type)) & (ll['trialType2']==activity_label)]
l_temp_index = l_temp.index.values
xx_temp = xx[l_temp_index]
yy_temp = yy[l_temp_index]
updated_x.append(xx_temp)
update_y.append(yy_temp)
updated_label.append(l_temp)
if len(xx_temp)==0:
print(i)
elif self.config['dataset_name']=='camargo':
l_temp = ll[(ll['trialType'].isin(self.selected_trial_type)) & (ll['Label'].isin(self.selected_activity_label))]
l_temp_index = l_temp.index.values
xx_temp = xx[l_temp_index]
yy_temp = yy[l_temp_index]
updated_x.append(xx_temp)
update_y.append(yy_temp)
updated_label.append(l_temp)
elif self.config['dataset_name']=='kiha':
l_temp = ll[(ll['trialType'].isin(self.selected_trial_type))]
l_temp_index = l_temp.index.values
xx_temp = xx[l_temp_index]
yy_temp = yy[l_temp_index]
updated_x.append(xx_temp)
update_y.append(yy_temp)
updated_label.append(l_temp)
# else:
# continue
return updated_x, update_y, updated_label
def concatenate_data(self):
self.labels = pd.concat(self.labels, axis=0, ignore_index = True)
self.x = np.concatenate(self.x, axis=0)
self.y = np.concatenate(self.y, axis=0)
def run_dataset_split_loop(self):
train_labels = []
test_labels = []
train_x = []
train_y = []
test_x = []
test_y = []
for t, trial in enumerate(self.labels):
if all(trial['subject'].isin(self.train_subjects)) and all(trial['trialType2'].isin(self.train_activity)):
train_labels.append(trial)
train_x.append(self.x[t])
train_y.append(self.y[t])
elif all(trial['subject'].isin(self.test_subjects)) and all(trial['trialType2'].isin(self.test_activity)):
test_labels.append(trial)
test_x.append(self.x[t])
test_y.append(self.y[t])
self.train_dataset['x'] = train_x
self.train_dataset['y'] = train_y
self.train_dataset['labels'] = train_labels
self.test_dataset['x'] = test_x
self.test_dataset['y'] = test_y
self.test_dataset['labels'] = test_labels
return self.train_dataset, self.test_dataset
def run_dataset_split(self):
if set(self.test_subjects).issubset(self.train_subjects):
train_labels = self.labels[~self.labels['subject'].isin(self.test_subjects)]
test_labels = self.labels[(self.labels['subjects'].isin(self.test_subjects))]
else:
train_labels = self.labels[self.labels['subject'].isin(self.train_subjects)]
test_labels = self.labels[(self.labels['subject'].isin(self.test_subjects))]
print(train_labels['subject'].unique())
print(test_labels['subject'].unique())
train_index = train_labels.index.values
test_index = test_labels.index.values
print('training length', len(train_index))
print('test length', len(test_index))
train_x = self.x[train_index]
train_y = self.y[train_index]
# self.train_dataset['x'] = train_x.reshape([int(train_x.shape[0]/self.config['target_padding_length']), self.config['target_padding_length'], train_x.shape[1]])
# self.train_dataset['y'] = train_y.reshape([int(train_y.shape[0]/self.config['target_padding_length']), self.config['target_padding_length'], train_y.shape[1]])
self.train_dataset['x'] = train_x
self.train_dataset['y'] = train_y
self.train_dataset['labels'] = train_labels.reset_index(drop=True)
test_x = self.x[test_index]
test_y = self.y[test_index]
# self.test_dataset['x'] = test_x.reshape([int(test_x.shape[0]/self.config['target_padding_length']), self.config['target_padding_length'], test_x.shape[1]])
# self.test_dataset['y'] = test_y.reshape([int(test_y.shape[0]/self.config['target_padding_length']), self.config['target_padding_length'], test_y.shape[1]])
self.test_dataset['x'] = test_x
self.test_dataset['y'] = test_y
self.test_dataset['labels'] = test_labels.reset_index(drop=True)
del train_labels, test_labels, train_x, train_y, test_x, test_y
return self.train_dataset, self.test_dataset
|