ZennyKenny's picture
Update app.py
7618b82 verified
raw
history blame
16.7 kB
import os
import warnings
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
warnings.filterwarnings("ignore")
# Import Mostly AI SDK
try:
from mostlyai.sdk import MostlyAI
MOSTLY_AI_AVAILABLE = True
except ImportError:
MOSTLY_AI_AVAILABLE = False
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
class SyntheticDataGenerator:
def __init__(self):
self.mostly = None
self.generator = None
self.original_data = None
def initialize_mostly_ai(self) -> Tuple[bool, str]:
if not MOSTLY_AI_AVAILABLE:
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
try:
self.mostly = MostlyAI(local=True, local_port=8080)
return True, "Mostly AI SDK initialized successfully."
except Exception as e:
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
def train_generator(
self,
data: pd.DataFrame,
name: str,
epochs: int = 10,
max_training_time: int = 30,
batch_size: int = 32,
value_protection: bool = True,
rare_category_protection: bool = False,
flexible_generation: bool = False,
model_size: str = "MEDIUM",
target_accuracy: float = 0.95,
validation_split: float = 0.2,
learning_rate: float = 0.001,
early_stopping_patience: int = 10,
dropout_rate: float = 0.1,
weight_decay: float = 0.0001,
) -> Tuple[bool, str]:
if not self.mostly:
return False, "Mostly AI SDK not initialized. Please initialize the SDK first."
try:
self.original_data = data
train_config = {
"tables": [
{
"name": name,
"data": data,
"tabular_model_configuration": {
"max_epochs": epochs,
"max_training_time": max_training_time,
"value_protection": value_protection,
"batch_size": batch_size,
"rare_category_protection": rare_category_protection,
"flexible_generation": flexible_generation,
"model_size": model_size, # "SMALL" | "MEDIUM" | "LARGE"
"target_accuracy": target_accuracy, # early stop once target met
"validation_split": validation_split,
"learning_rate": learning_rate,
"early_stopping_patience": early_stopping_patience,
"dropout_rate": dropout_rate,
"weight_decay": weight_decay,
},
}
]
}
self.generator = self.mostly.train(config=train_config)
return True, f"Training completed successfully. Model name: {name}"
except Exception as e:
return False, f"Training failed with error: {str(e)}"
def generate_synthetic_data(self, size: int) -> Tuple[Optional[pd.DataFrame], str]:
if not self.generator:
return None, "No trained generator available. Please train a model first."
try:
synthetic_data = self.mostly.generate(self.generator, size=size)
df = synthetic_data.data()
return df, f"Synthetic data generated successfully. {len(df)} records created."
except Exception as e:
return None, f"Synthetic data generation failed with error: {str(e)}"
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
if df is None or df.empty:
return "No data available to analyze."
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
rows, cols = len(df), len(df.columns)
estimated_training_mb = memory_mb * 4
status = "Good" if memory_mb < 100 else ("Large" if memory_mb < 500 else "Very Large")
return f"""
Memory Usage Estimate:
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
""".strip()
# --- App state ---
generator = SyntheticDataGenerator()
_last_synth_df: Optional[pd.DataFrame] = None
# ---- Gradio wrappers ----
def initialize_sdk() -> str:
ok, msg = generator.initialize_mostly_ai()
return ("Success: " if ok else "Error: ") + msg
def train_model(
data: pd.DataFrame,
model_name: str,
epochs: int,
max_training_time: int,
batch_size: int,
value_protection: bool,
rare_category_protection: bool,
flexible_generation: bool,
model_size: str,
target_accuracy: float,
validation_split: float,
learning_rate: float,
early_stopping_patience: int,
dropout_rate: float,
weight_decay: float,
) -> str:
if data is None or data.empty:
return "Error: No data provided. Please upload or create sample data first."
ok, msg = generator.train_generator(
data=data,
name=model_name,
epochs=epochs,
max_training_time=max_training_time,
batch_size=batch_size,
value_protection=value_protection,
rare_category_protection=rare_category_protection,
flexible_generation=flexible_generation,
model_size=model_size,
target_accuracy=target_accuracy,
validation_split=validation_split,
learning_rate=learning_rate,
early_stopping_patience=early_stopping_patience,
dropout_rate=dropout_rate,
weight_decay=weight_decay,
)
return ("Success: " if ok else "Error: ") + msg
def generate_data(size: int) -> Tuple[Optional[pd.DataFrame], str]:
global _last_synth_df
synth_df, message = generator.generate_synthetic_data(size)
if synth_df is not None:
_last_synth_df = synth_df.copy()
return synth_df, f"Success: {message}"
else:
return None, f"Error: {message}"
def download_csv_prepare() -> Optional[str]:
"""Return a path to the latest synthetic CSV; used as output to gr.File."""
global _last_synth_df
if _last_synth_df is None or _last_synth_df.empty:
return None
os.makedirs("/tmp", exist_ok=True)
path = "/tmp/synthetic_data.csv"
_last_synth_df.to_csv(path, index=False)
return path
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame):
if original_df is None or synthetic_df is None:
return None
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
if not numeric_cols:
return None
n_cols = min(3, len(numeric_cols))
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
fig = make_subplots(rows=n_rows, cols=n_cols, subplot_titles=numeric_cols[: n_rows * n_cols])
for i, col in enumerate(numeric_cols[: n_rows * n_cols]):
row = i // n_cols + 1
col_idx = i % n_cols + 1
fig.add_trace(go.Histogram(x=original_df[col], name=f"Original {col}", opacity=0.7, nbinsx=20), row=row, col=col_idx)
fig.add_trace(go.Histogram(x=synthetic_df[col], name=f"Synthetic {col}", opacity=0.7, nbinsx=20), row=row, col=col_idx)
fig.update_layout(title="Original vs Synthetic Data Comparison", height=300 * n_rows, showlegend=True)
return fig
# ---- UI ----
def create_interface():
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
gr.Image(
value="https://img.mailinblue.com/8225865/images/content_library/original/6880d164e4e4ea1a183ad4c0.png",
show_label=False,
elem_id="header-image",
)
gr.Markdown(
"""
# Synthetic Data SDK by MOSTLY AI Demo Space
[Documentation](https://mostly-ai.github.io/mostlyai/) | [Technical White Paper](https://arxiv.org/abs/2508.00718) | [Usage Examples](https://mostly-ai.github.io/mostlyai/usage/) | [Free Cloud Service](https://app.mostly.ai/)
A Python toolkit for generating high-fidelity, privacy-safe synthetic data.
"""
)
with gr.Tab("Quick Start"):
gr.Markdown("### Initialize the SDK and upload your data")
with gr.Row():
with gr.Column():
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column():
gr.Markdown(
"""
**Next Steps:**
1. Initialize the SDK (click button above)
2. Go to "Upload Data and Train Model" tab to upload your CSV file
3. Train a model on your data
4. Generate synthetic data
"""
)
with gr.Tab("Upload Data and Train Model"):
gr.Markdown("### Upload your CSV file to generate synthetic data")
gr.Markdown(
"""
**File Requirements:**
- Format: CSV with header row
- Size: Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
"""
)
file_upload = gr.File(label="Upload CSV File", file_types=[".csv"], file_count="single")
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Textbox(
value="My Synthetic Model",
label="Generator Name",
placeholder="Enter a name for your generator",
info="Appears in training runs and saved generators."
)
epochs = gr.Slider(
1, 200, value=100, step=1, label="Training Epochs",
info="Maximum number of passes over the training data."
)
max_training_time = gr.Slider(
1, 1000, value=60, step=1, label="Maximum Training Time (minutes)",
info="Upper bound in minutes; training stops if exceeded."
)
batch_size = gr.Slider(
8, 1024, value=32, step=8, label="Batch Size",
info="Number of rows per optimization step. Larger can speed up but needs more memory."
)
value_protection = gr.Checkbox(
label="Value Protection",
info="Adds protections to reduce memorization of unique or sensitive values.",
value=False
)
rare_category_protection = gr.Checkbox(
label="Rare Category Protection",
info="Prevents overfitting to infrequent categories to improve privacy and robustness.",
value=False
)
with gr.Column(scale=1):
flexible_generation = gr.Checkbox(
label="Flexible Generation",
info="Allows generation when inputs slightly differ from training schema.",
value=True
)
model_size = gr.Dropdown(
choices=["SMALL", "MEDIUM", "LARGE"],
value="MEDIUM",
label="Model Size",
info="Sets model capacity. Larger can improve fidelity but uses more compute."
)
target_accuracy = gr.Slider(
0.50, 0.999, value=0.95, step=0.001, label="Target Accuracy",
info="Stop early when validation accuracy reaches this threshold."
)
validation_split = gr.Slider(
0.05, 0.5, value=0.2, step=0.01, label="Validation Split",
info="Fraction of the dataset held out for validation during training."
)
early_stopping_patience = gr.Slider(
0, 50, value=10, step=1, label="Early Stopping Patience (epochs)",
info="Stop if no validation improvement after this many epochs."
)
with gr.Column(scale=1):
learning_rate = gr.Number(
value=0.001, precision=6, label="Learning Rate",
info="Step size for the optimizer. Typical range: 1e-4 to 1e-2."
)
dropout_rate = gr.Slider(
0.0, 0.6, value=0.1, step=0.01, label="Dropout Rate",
info="Regularization to reduce overfitting by randomly dropping units."
)
weight_decay = gr.Number(
value=0.0001, precision=6, label="Weight Decay",
info="L2 regularization strength applied to model weights."
)
train_btn = gr.Button("Train Model", variant="primary")
train_status = gr.Textbox(label="Training Status", interactive=False)
with gr.Tab("Generate Data"):
gr.Markdown("### Generate synthetic data from your trained model")
with gr.Row():
with gr.Column():
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate",
info="How many synthetic rows to create in the table.")
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
with gr.Column():
gen_status = gr.Textbox(label="Generation Status", interactive=False)
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
with gr.Row():
csv_download_btn = gr.Button("Download CSV", variant="secondary")
with gr.Group(visible=False) as csv_group:
csv_file = gr.File(label="Synthetic CSV", interactive=False)
comparison_plot = gr.Plot(label="Data Comparison")
# ---- Events ----
init_btn.click(initialize_sdk, outputs=[init_status])
train_btn.click(
train_model,
inputs=[
uploaded_data, model_name,
epochs, max_training_time, batch_size,
value_protection, rare_category_protection, flexible_generation,
model_size, target_accuracy, validation_split,
learning_rate, early_stopping_patience, dropout_rate, weight_decay
],
outputs=[train_status],
)
generate_btn.click(generate_data, inputs=[gen_size], outputs=[synthetic_data, gen_status])
synthetic_data.change(create_comparison_plot, inputs=[uploaded_data, synthetic_data], outputs=[comparison_plot])
def _prepare_csv_for_download():
path = download_csv_prepare()
if path:
return path, gr.update(visible=True)
else:
return None, gr.update(visible=False)
csv_download_btn.click(
_prepare_csv_for_download,
outputs=[csv_file, csv_group],
)
def process_uploaded_file(file):
if file is None:
return None, "No file uploaded.", gr.update(visible=False)
try:
df = pd.read_csv(file.name)
success_msg = f"File uploaded successfully. {len(df)} rows × {len(df.columns)} columns"
mem_info = generator.estimate_memory_usage(df)
return df, success_msg, gr.update(value=mem_info, visible=True)
except Exception as e:
return None, f"Error reading file: {str(e)}", gr.update(visible=False)
file_upload.change(process_uploaded_file, inputs=[file_upload], outputs=[uploaded_data, train_status, memory_info])
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)