Spaces:
Sleeping
Sleeping
Mostafa Shahin
commited on
Commit
·
4c01711
1
Parent(s):
fbc2e1b
First Commit
Browse files- Phonemize.py +104 -0
- __pycache__/Phonemize.cpython-312.pyc +0 -0
- __pycache__/transcriber.cpython-312.pyc +0 -0
- app.py +167 -0
- data/p2att_en_us-arpa.csv +42 -0
- data/prompts.txt +44 -0
- models/SA/added_tokens.json +5 -0
- models/SA/config.json +109 -0
- models/SA/model.safetensors +3 -0
- models/SA/preprocessor_config.json +10 -0
- models/SA/special_tokens_map.json +6 -0
- models/SA/tokenizer_config.json +608 -0
- models/SA/vocab.json +73 -0
- models/d_phonemizer/en_us_cmudict_forward.pt +3 -0
- models/sb_phonemizer/config.json +3 -0
- models/sb_phonemizer/ctc_lin.ckpt +3 -0
- models/sb_phonemizer/hyperparams.yaml +507 -0
- models/sb_phonemizer/model.ckpt +3 -0
- phoneme_vocab.json +1 -0
- pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/ctc_lin.ckpt +1 -0
- pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/custom.py +1 -0
- pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/hyperparams.yaml +1 -0
- pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/model.ckpt +1 -0
- requirements.txt +8 -0
- transcriber.py +283 -0
Phonemize.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_from_disk
|
2 |
+
from dp.phonemizer import Phonemizer
|
3 |
+
from speechbrain.pretrained import GraphemeToPhoneme
|
4 |
+
import cmudict
|
5 |
+
import re
|
6 |
+
import fire
|
7 |
+
import torch
|
8 |
+
from os.path import join
|
9 |
+
|
10 |
+
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
|
11 |
+
torch.multiprocessing.set_start_method('spawn')
|
12 |
+
|
13 |
+
class phonemization:
|
14 |
+
def __init__(self):
|
15 |
+
self.chars_to_ignore_regex = r'[,?.!-;:"]'
|
16 |
+
self.dp_phonemizer_model_path = join('models','d_phonemizer','en_us_cmudict_forward.pt')
|
17 |
+
self.sb_phonemizer_model_path = join('models','sb_phonemizer')
|
18 |
+
|
19 |
+
|
20 |
+
self.cmu_dict = cmudict.dict()
|
21 |
+
self.dp_phonemizer = Phonemizer.from_checkpoint(self.dp_phonemizer_model_path)
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
self.sb_phonemizer = GraphemeToPhoneme.from_hparams(self.sb_phonemizer_model_path,run_opts={"device":"cuda"})
|
24 |
+
else:
|
25 |
+
self.sb_phonemizer = GraphemeToPhoneme.from_hparams(self.sb_phonemizer_model_path)
|
26 |
+
self.normalize = False
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def dp_phonemize(self, text):
|
33 |
+
return self.dp_phonemizer(text, lang='en_us',expand_acronyms=False).replace('[',' ').replace(']',' ').split()
|
34 |
+
|
35 |
+
|
36 |
+
def cmu_phonemize(self,
|
37 |
+
text,
|
38 |
+
fallback_phonemizer=dp_phonemize):
|
39 |
+
phoneme_lst=[]
|
40 |
+
for word in text.split():
|
41 |
+
if word in self.cmu_dict:
|
42 |
+
phoneme_lst.extend(re.sub('[0-9]','',' '.join(self.cmu_dict.get(word)[0])).split())
|
43 |
+
else:
|
44 |
+
phoneme_lst.extend(fallback_phonemizer(self,word))
|
45 |
+
phoneme_lst = [p.lower() for p in phoneme_lst]
|
46 |
+
return(phoneme_lst)
|
47 |
+
|
48 |
+
|
49 |
+
def sb_phonemize(self,text):
|
50 |
+
return self.sb_phonemizer(text)
|
51 |
+
|
52 |
+
def remove_special_characters(self,text):
|
53 |
+
#print(text)
|
54 |
+
return re.sub(self.chars_to_ignore_regex, ' ', text).lower() + " "
|
55 |
+
|
56 |
+
def replace_multiple_spaces_with_single_space(self, input_string):
|
57 |
+
"""Replace multiple spaces with a single space."""
|
58 |
+
return re.sub(r'\s+', ' ', input_string)
|
59 |
+
|
60 |
+
def phonemize_batch(self,
|
61 |
+
batch,
|
62 |
+
phonamizer_fn=dp_phonemize,
|
63 |
+
suffix=''):
|
64 |
+
|
65 |
+
if self.normalize:
|
66 |
+
text = batch['text_norm'].lower()
|
67 |
+
else:
|
68 |
+
text = batch['text'].lower()
|
69 |
+
phoneme_str = ' '.join(phonamizer_fn(text))
|
70 |
+
phoneme_str = phoneme_str.lower()
|
71 |
+
phoneme_str = self.replace_multiple_spaces_with_single_space(phoneme_str)
|
72 |
+
batch[f'phoneme{suffix}'] = phoneme_str.strip()
|
73 |
+
return batch
|
74 |
+
|
75 |
+
def remove_special_characters_batch(self, batch):
|
76 |
+
batch["text_norm"] = self.remove_special_characters(batch["text"])
|
77 |
+
return batch
|
78 |
+
|
79 |
+
def run(self,
|
80 |
+
dataset_path,
|
81 |
+
output_path,
|
82 |
+
phonemizers='dp,sb,cmu',
|
83 |
+
normalize=True,
|
84 |
+
nproc=1):
|
85 |
+
|
86 |
+
data = load_from_disk(dataset_path)
|
87 |
+
|
88 |
+
if normalize:
|
89 |
+
data = data.map(self.remove_special_characters_batch, num_proc=nproc)
|
90 |
+
for phonemizer in phonemizers.split(','):
|
91 |
+
if phonemizer == 'cmu':
|
92 |
+
data = data.map(self.phonemize_batch, fn_kwargs={'phonamizer_fn':self.cmu_phonemize,'suffix':'_cmu'},num_proc=nproc)
|
93 |
+
if phonemizer == 'dp':
|
94 |
+
data = data.map(self.phonemize_batch, fn_kwargs={'phonamizer_fn':self.dp_phonemize,'suffix':'_dp'},num_proc=nproc)
|
95 |
+
if phonemizer == 'sb':
|
96 |
+
if torch.cuda.is_available():
|
97 |
+
nproc = torch.cuda.device_count()
|
98 |
+
data = data.map(self.phonemize_batch, fn_kwargs={'phonamizer_fn':self.sb_phonemize,'suffix':'_sb'},num_proc=nproc, cache_file_name='/g/data/iv96/mostafa/cache_sb', load_from_cache_file=True)
|
99 |
+
data.save_to_disk(output_path)
|
100 |
+
|
101 |
+
|
102 |
+
if __name__=='__main__':
|
103 |
+
fire.Fire(phonemization)
|
104 |
+
|
__pycache__/Phonemize.cpython-312.pyc
ADDED
Binary file (6.31 kB). View file
|
|
__pycache__/transcriber.cpython-312.pyc
ADDED
Binary file (20.6 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import Phonemize
|
3 |
+
from Levenshtein import editops
|
4 |
+
from gradio.components import Audio, Dropdown, Textbox, Image
|
5 |
+
import gradio as gr
|
6 |
+
import transcriber
|
7 |
+
import json
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from scipy.io import wavfile
|
11 |
+
from scipy.signal import spectrogram
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
|
15 |
+
engine = transcriber.transcribe_SA(model_path='models/SA',verbose=0)
|
16 |
+
phonemizer = Phonemize.phonemization()
|
17 |
+
|
18 |
+
prompts = np.loadtxt('data/prompts.txt', dtype=str)
|
19 |
+
|
20 |
+
Attributes = engine.att_list
|
21 |
+
df_output = None
|
22 |
+
|
23 |
+
def select_prompt():
|
24 |
+
return random.choice(prompts)
|
25 |
+
|
26 |
+
def phonemize_prompt(prompt):
|
27 |
+
return ' '.join(phonemizer.cmu_phonemize(prompt)).lower()
|
28 |
+
|
29 |
+
def diff_fn():
|
30 |
+
return [('H','+'),('E','-'),('N',None),('\n', None),('F','-'),('Fgo','-'),('M','+')]
|
31 |
+
|
32 |
+
def recognizeAudio(audio_file, attributes):
|
33 |
+
#print(','.join(attributes))
|
34 |
+
global df_output
|
35 |
+
output = engine.transcribe(audio_file, attributes= tuple(attributes), phonological_matrix_file='data/p2att_en_us-arpa.csv', human_readable=False)
|
36 |
+
records = []
|
37 |
+
d = json.loads(output)
|
38 |
+
records.append(['Phoneme']+d['Phoneme']['symbols'])
|
39 |
+
for att in d['Attributes']:
|
40 |
+
records.append([att['Name']]+att['Pattern'])
|
41 |
+
df = pd.DataFrame.from_records(records)
|
42 |
+
df.fillna('', inplace=True)
|
43 |
+
df_output = df
|
44 |
+
return df.to_html(header=False, index=False)
|
45 |
+
|
46 |
+
#Get error by matching the expected sequence with the recognized one and return the output in a format that can be visualized by the gradio HighlightedText box
|
47 |
+
def get_error(exp_list, rec_list):
|
48 |
+
exp_list = list(exp_list)
|
49 |
+
rec_list = list(rec_list)
|
50 |
+
vocab = set(exp_list+rec_list)
|
51 |
+
w2c = dict(zip(vocab,range(len(vocab))))
|
52 |
+
|
53 |
+
exp_out = [[a,None] for a in exp_list]
|
54 |
+
rec_out = [[a,None] for a in rec_list]
|
55 |
+
exp_enc = ''.join([chr(w2c[c]) for c in exp_list])
|
56 |
+
rec_enc = ''.join([chr(w2c[c]) for c in rec_list])
|
57 |
+
|
58 |
+
for op, exp_i, rec_i in editops(exp_enc, rec_enc):
|
59 |
+
if op == 'replace':
|
60 |
+
exp_out[exp_i][1] = 'S'
|
61 |
+
rec_out[rec_i][1] = 'S'
|
62 |
+
elif op == 'insert':
|
63 |
+
rec_out[rec_i][1] = 'I'
|
64 |
+
elif op == 'delete':
|
65 |
+
exp_out[exp_i][1] = 'D'
|
66 |
+
|
67 |
+
diff_list = [['Expected:\t', None]] + exp_out + [['\n',None]] + [['Recognized:\t', None]] + rec_out
|
68 |
+
return diff_list
|
69 |
+
|
70 |
+
|
71 |
+
def scale_vector(vector, new_min, new_max):
|
72 |
+
min_val = min(vector)
|
73 |
+
max_val = max(vector)
|
74 |
+
scaled_vector = []
|
75 |
+
for val in vector:
|
76 |
+
scaled_val = ((val - min_val) * (new_max - new_min) / (max_val - min_val)) + new_min
|
77 |
+
scaled_vector.append(scaled_val)
|
78 |
+
return scaled_vector
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
def create_spectrogram_with_att(wav_file, att_contour, att):
|
83 |
+
# Read the WAV file
|
84 |
+
sampling_rate, data = wavfile.read(wav_file)
|
85 |
+
|
86 |
+
# Calculate the spectrogram
|
87 |
+
f, t, Sxx = spectrogram(data, fs=sampling_rate)
|
88 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
89 |
+
|
90 |
+
# Plot the spectrogram
|
91 |
+
ax.pcolormesh(t, f, 10 * np.log10(Sxx), shading='gouraud')
|
92 |
+
ax.set_ylabel('Frequency (Hz)')
|
93 |
+
ax.set_xlabel('Time (s)')
|
94 |
+
ax.set_title(f'Spectrogram with {att} Contour')
|
95 |
+
ax.set_ylim(0, 8000) # Adjust the frequency range if necessary
|
96 |
+
|
97 |
+
# Plot the att contour
|
98 |
+
time_pitch = np.arange(0, len(att_contour) * 0.02, 0.02) # Assuming pitch_contour is sampled every 20 ms
|
99 |
+
ax.plot(time_pitch, att_contour, color='blue', label=f'{att} Contour')
|
100 |
+
ax.legend()
|
101 |
+
|
102 |
+
return fig
|
103 |
+
|
104 |
+
def plot_contour(audio_file, att):
|
105 |
+
indx = engine.processor.tokenizer.convert_tokens_to_ids([f'p_{att}'])
|
106 |
+
att_contour = engine.logits.squeeze()[:,indx]
|
107 |
+
att_contour = scale_vector(att_contour, 0, 6000)
|
108 |
+
fig = create_spectrogram_with_att(audio_file, att_contour, att)
|
109 |
+
return fig
|
110 |
+
|
111 |
+
|
112 |
+
with gr.Blocks() as gui:
|
113 |
+
with gr.Tab("Main"):
|
114 |
+
prompt = gr.Textbox(label='Prompt', value=select_prompt)
|
115 |
+
get_prompt = gr.Button("Get Prompt")
|
116 |
+
get_prompt.click(fn=select_prompt, outputs=prompt)
|
117 |
+
|
118 |
+
prompt_phonemes = gr.Textbox(label="Expected Phonemes", interactive=False)
|
119 |
+
get_phoneme = gr.Button("Get Phonemes")
|
120 |
+
get_phoneme.click(fn=phonemize_prompt, inputs=prompt, outputs=prompt_phonemes)
|
121 |
+
|
122 |
+
record_audio = gr.Audio(sources=["microphone","upload"], type="filepath")
|
123 |
+
att_list = gr.Dropdown(label="Select Attributes", choices=Attributes, value=['vowel', 'voiced', 'consonant'] ,multiselect=True)
|
124 |
+
process = gr.Button("Process Audio")
|
125 |
+
|
126 |
+
recognition = gr.HTML(label='Output')
|
127 |
+
|
128 |
+
process.click(fn=recognizeAudio, inputs=[record_audio,att_list], outputs=recognition)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
with gr.Tab("Assessment"):
|
133 |
+
assess = gr.Button("Assessment")
|
134 |
+
diff = []
|
135 |
+
for i in range(len(Attributes)+1):
|
136 |
+
diff.append(gr.HighlightedText(
|
137 |
+
combine_adjacent=False,
|
138 |
+
show_legend=True,
|
139 |
+
color_map={"S": "red", "I": "green", "D":"blue"}, visible=False))
|
140 |
+
|
141 |
+
def get_assessment(prompt_phonemes):#, recognized_phonemes, recognized_attributes):
|
142 |
+
outputs = [gr.HighlightedText(visible=False)]*(len(Attributes)+1)
|
143 |
+
outputs[0] = gr.HighlightedText(label=f"Phoneme Assessment",
|
144 |
+
value=get_error(prompt_phonemes.split(), df_output.iloc[0].values[1:]),
|
145 |
+
visible=True)
|
146 |
+
i = 1
|
147 |
+
for i,r in df_output.iloc[1:].iterrows():
|
148 |
+
convert = lambda ph: '-' if f'n_{att}' in engine.p2att_map[ph] else '+'
|
149 |
+
att = r.iloc[0]
|
150 |
+
exp_att = [convert(ph) for ph in prompt_phonemes.split()]
|
151 |
+
rec_att = r.iloc[1:].values
|
152 |
+
outputs[i] = gr.HighlightedText(label=f"{att} Assessment",
|
153 |
+
value=get_error(exp_att, rec_att),
|
154 |
+
visible=True)
|
155 |
+
i += 1
|
156 |
+
|
157 |
+
return outputs
|
158 |
+
|
159 |
+
assess.click(fn=get_assessment, inputs= [prompt_phonemes], outputs=diff)
|
160 |
+
|
161 |
+
with gr.Tab("Analysis"):
|
162 |
+
selected_att = gr.Dropdown( Attributes, label="Select an Attribute to plot", value='voiced', interactive=True)
|
163 |
+
do_plot = gr.Button('Plot')
|
164 |
+
plot_block = gr.Plot(label='Spectrogram with Attribute Contour')
|
165 |
+
do_plot.click(plot_contour, inputs=[record_audio,selected_att], outputs=plot_block)
|
166 |
+
|
167 |
+
gui.launch()
|
data/p2att_en_us-arpa.csv
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Phoneme_arpa,alveolar,palatal,dental,glottal,labial,velar,anterior,posterior,retroflex,high,low,mid,front,back,central,consonant,sonorant,long,short,vowel,semivowel,fricative,nasal,stop,approximant,affricate,liquid,continuant,monophthong,diphthong,round,voiced,labiodental,obstruent,bilabial,coronal,dorsal
|
2 |
+
aa,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
3 |
+
ae,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
4 |
+
ah,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
5 |
+
ao,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0
|
6 |
+
aw,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0
|
7 |
+
ay,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0
|
8 |
+
eh,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0
|
9 |
+
er,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
10 |
+
ey,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0
|
11 |
+
ih,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
12 |
+
iy,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0
|
13 |
+
ow,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0
|
14 |
+
oy,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0
|
15 |
+
uh,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0
|
16 |
+
uw,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0
|
17 |
+
b,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0
|
18 |
+
ch,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0
|
19 |
+
d,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0
|
20 |
+
dh,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0
|
21 |
+
f,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0
|
22 |
+
g,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1
|
23 |
+
hh,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1
|
24 |
+
jh,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0
|
25 |
+
k,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1
|
26 |
+
l,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,1,0
|
27 |
+
m,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0
|
28 |
+
n,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0
|
29 |
+
nd,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0
|
30 |
+
ng,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1
|
31 |
+
p,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0
|
32 |
+
r,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,1,0
|
33 |
+
s,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0
|
34 |
+
sh,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0
|
35 |
+
sil,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
36 |
+
t,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0
|
37 |
+
th,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0
|
38 |
+
v,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0
|
39 |
+
w,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0
|
40 |
+
y,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0
|
41 |
+
z,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0
|
42 |
+
zh,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0
|
data/prompts.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Top
|
2 |
+
Cop
|
3 |
+
Tight
|
4 |
+
Kite
|
5 |
+
Torn
|
6 |
+
Corn
|
7 |
+
Tame
|
8 |
+
Came
|
9 |
+
Tall
|
10 |
+
Call
|
11 |
+
Tail
|
12 |
+
Kale
|
13 |
+
Bat
|
14 |
+
Back
|
15 |
+
Pit
|
16 |
+
Pick
|
17 |
+
Ate
|
18 |
+
Ache
|
19 |
+
But
|
20 |
+
Buck
|
21 |
+
Sit
|
22 |
+
Sick
|
23 |
+
Rate
|
24 |
+
Rake
|
25 |
+
Date
|
26 |
+
Gate
|
27 |
+
Deer
|
28 |
+
Gear
|
29 |
+
Drip
|
30 |
+
Grip
|
31 |
+
Down
|
32 |
+
Gown
|
33 |
+
Doe
|
34 |
+
Go
|
35 |
+
Bid
|
36 |
+
Big
|
37 |
+
Led
|
38 |
+
Leg
|
39 |
+
Mud
|
40 |
+
Mug
|
41 |
+
Bud
|
42 |
+
Bug
|
43 |
+
Bed
|
44 |
+
Beg
|
models/SA/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 72,
|
3 |
+
"<s>": 71,
|
4 |
+
"<unk>": 73
|
5 |
+
}
|
models/SA/config.json
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/g/data/iv96/mostafa/Speech-Attribute-Transcription/models/wav2vec2-large-robust/",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_attn_dim": null,
|
5 |
+
"adapter_kernel_size": 3,
|
6 |
+
"adapter_stride": 2,
|
7 |
+
"add_adapter": false,
|
8 |
+
"apply_spec_augment": true,
|
9 |
+
"architectures": [
|
10 |
+
"Wav2Vec2ForCTC"
|
11 |
+
],
|
12 |
+
"attention_dropout": 0.1,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"classifier_proj_size": 256,
|
15 |
+
"codevector_dim": 768,
|
16 |
+
"contrastive_logits_temperature": 0.1,
|
17 |
+
"conv_bias": true,
|
18 |
+
"conv_dim": [
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512,
|
25 |
+
512
|
26 |
+
],
|
27 |
+
"conv_kernel": [
|
28 |
+
10,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
3,
|
33 |
+
2,
|
34 |
+
2
|
35 |
+
],
|
36 |
+
"conv_stride": [
|
37 |
+
5,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2,
|
43 |
+
2
|
44 |
+
],
|
45 |
+
"ctc_loss_reduction": "mean",
|
46 |
+
"ctc_zero_infinity": false,
|
47 |
+
"diversity_loss_weight": 0.1,
|
48 |
+
"do_stable_layer_norm": true,
|
49 |
+
"eos_token_id": 2,
|
50 |
+
"feat_extract_activation": "gelu",
|
51 |
+
"feat_extract_dropout": 0.0,
|
52 |
+
"feat_extract_norm": "layer",
|
53 |
+
"feat_proj_dropout": 0.1,
|
54 |
+
"feat_quantizer_dropout": 0.0,
|
55 |
+
"final_dropout": 0.1,
|
56 |
+
"hidden_act": "gelu",
|
57 |
+
"hidden_dropout": 0.1,
|
58 |
+
"hidden_dropout_prob": 0.1,
|
59 |
+
"hidden_size": 1024,
|
60 |
+
"initializer_range": 0.02,
|
61 |
+
"intermediate_size": 4096,
|
62 |
+
"layer_norm_eps": 1e-05,
|
63 |
+
"layerdrop": 0.1,
|
64 |
+
"mask_feature_length": 10,
|
65 |
+
"mask_feature_min_masks": 0,
|
66 |
+
"mask_feature_prob": 0.0,
|
67 |
+
"mask_time_length": 10,
|
68 |
+
"mask_time_min_masks": 2,
|
69 |
+
"mask_time_prob": 0.05,
|
70 |
+
"model_type": "wav2vec2",
|
71 |
+
"num_adapter_layers": 3,
|
72 |
+
"num_attention_heads": 16,
|
73 |
+
"num_codevector_groups": 2,
|
74 |
+
"num_codevectors_per_group": 320,
|
75 |
+
"num_conv_pos_embedding_groups": 16,
|
76 |
+
"num_conv_pos_embeddings": 128,
|
77 |
+
"num_feat_extract_layers": 7,
|
78 |
+
"num_hidden_layers": 24,
|
79 |
+
"num_negatives": 100,
|
80 |
+
"output_hidden_size": 1024,
|
81 |
+
"pad_token_id": 0,
|
82 |
+
"proj_codevector_dim": 768,
|
83 |
+
"tdnn_dilation": [
|
84 |
+
1,
|
85 |
+
2,
|
86 |
+
3,
|
87 |
+
1,
|
88 |
+
1
|
89 |
+
],
|
90 |
+
"tdnn_dim": [
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
512,
|
94 |
+
512,
|
95 |
+
1500
|
96 |
+
],
|
97 |
+
"tdnn_kernel": [
|
98 |
+
5,
|
99 |
+
3,
|
100 |
+
3,
|
101 |
+
1,
|
102 |
+
1
|
103 |
+
],
|
104 |
+
"torch_dtype": "float32",
|
105 |
+
"transformers_version": "4.37.2",
|
106 |
+
"use_weighted_layer_sum": false,
|
107 |
+
"vocab_size": 71,
|
108 |
+
"xvector_output_dim": 512
|
109 |
+
}
|
models/SA/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31862db1655be478b59e480e490165c7109e8b659277b43ee3fcc3fff772fea0
|
3 |
+
size 1262098580
|
models/SA/preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2Processor",
|
8 |
+
"return_attention_mask": false,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
models/SA/special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
models/SA/tokenizer_config.json
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "p_alveolar",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "n_alveolar",
|
21 |
+
"lstrip": true,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": true,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "p_palatal",
|
29 |
+
"lstrip": true,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": true,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "n_palatal",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": true,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "p_dental",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": true,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "n_dental",
|
53 |
+
"lstrip": true,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": true,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "p_glottal",
|
61 |
+
"lstrip": true,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": true,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "n_glottal",
|
69 |
+
"lstrip": true,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": true,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "p_labial",
|
77 |
+
"lstrip": true,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": true,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "n_labial",
|
85 |
+
"lstrip": true,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": true,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "p_velar",
|
93 |
+
"lstrip": true,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": true,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "n_velar",
|
101 |
+
"lstrip": true,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": true,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "p_anterior",
|
109 |
+
"lstrip": true,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": true,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "n_anterior",
|
117 |
+
"lstrip": true,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": true,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "p_posterior",
|
125 |
+
"lstrip": true,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": true,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "n_posterior",
|
133 |
+
"lstrip": true,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": true,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "p_retroflex",
|
141 |
+
"lstrip": true,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": true,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "n_retroflex",
|
149 |
+
"lstrip": true,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": true,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "p_mid",
|
157 |
+
"lstrip": true,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": true,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "n_mid",
|
165 |
+
"lstrip": true,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": true,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "p_high",
|
173 |
+
"lstrip": true,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": true,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "n_high",
|
181 |
+
"lstrip": true,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": true,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "p_low",
|
189 |
+
"lstrip": true,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": true,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "n_low",
|
197 |
+
"lstrip": true,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": true,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "p_front",
|
205 |
+
"lstrip": true,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": true,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "n_front",
|
213 |
+
"lstrip": true,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": true,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "p_back",
|
221 |
+
"lstrip": true,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": true,
|
224 |
+
"single_word": false,
|
225 |
+
"special": false
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "n_back",
|
229 |
+
"lstrip": true,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": true,
|
232 |
+
"single_word": false,
|
233 |
+
"special": false
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "p_central",
|
237 |
+
"lstrip": true,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": true,
|
240 |
+
"single_word": false,
|
241 |
+
"special": false
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "n_central",
|
245 |
+
"lstrip": true,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": true,
|
248 |
+
"single_word": false,
|
249 |
+
"special": false
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "p_consonant",
|
253 |
+
"lstrip": true,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": true,
|
256 |
+
"single_word": false,
|
257 |
+
"special": false
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "n_consonant",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": true,
|
264 |
+
"single_word": false,
|
265 |
+
"special": false
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "p_sonorant",
|
269 |
+
"lstrip": true,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": true,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "n_sonorant",
|
277 |
+
"lstrip": true,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": true,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "p_long",
|
285 |
+
"lstrip": true,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": true,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "n_long",
|
293 |
+
"lstrip": true,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": true,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"37": {
|
300 |
+
"content": "p_short",
|
301 |
+
"lstrip": true,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": true,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"38": {
|
308 |
+
"content": "n_short",
|
309 |
+
"lstrip": true,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": true,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"39": {
|
316 |
+
"content": "p_vowel",
|
317 |
+
"lstrip": true,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": true,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"40": {
|
324 |
+
"content": "n_vowel",
|
325 |
+
"lstrip": true,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": true,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"41": {
|
332 |
+
"content": "p_semivowel",
|
333 |
+
"lstrip": true,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": true,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"42": {
|
340 |
+
"content": "n_semivowel",
|
341 |
+
"lstrip": true,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": true,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"43": {
|
348 |
+
"content": "p_fricative",
|
349 |
+
"lstrip": true,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": true,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"44": {
|
356 |
+
"content": "n_fricative",
|
357 |
+
"lstrip": true,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": true,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"45": {
|
364 |
+
"content": "p_nasal",
|
365 |
+
"lstrip": true,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": true,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"46": {
|
372 |
+
"content": "n_nasal",
|
373 |
+
"lstrip": true,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": true,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"47": {
|
380 |
+
"content": "p_stop",
|
381 |
+
"lstrip": true,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": true,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"48": {
|
388 |
+
"content": "n_stop",
|
389 |
+
"lstrip": true,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": true,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"49": {
|
396 |
+
"content": "p_approximant",
|
397 |
+
"lstrip": true,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": true,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50": {
|
404 |
+
"content": "n_approximant",
|
405 |
+
"lstrip": true,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": true,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"51": {
|
412 |
+
"content": "p_affricate",
|
413 |
+
"lstrip": true,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": true,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"52": {
|
420 |
+
"content": "n_affricate",
|
421 |
+
"lstrip": true,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": true,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"53": {
|
428 |
+
"content": "p_liquid",
|
429 |
+
"lstrip": true,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": true,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"54": {
|
436 |
+
"content": "n_liquid",
|
437 |
+
"lstrip": true,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": true,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"55": {
|
444 |
+
"content": "p_continuant",
|
445 |
+
"lstrip": true,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": true,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"56": {
|
452 |
+
"content": "n_continuant",
|
453 |
+
"lstrip": true,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": true,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"57": {
|
460 |
+
"content": "p_monophthong",
|
461 |
+
"lstrip": true,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": true,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"58": {
|
468 |
+
"content": "n_monophthong",
|
469 |
+
"lstrip": true,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": true,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"59": {
|
476 |
+
"content": "p_diphthong",
|
477 |
+
"lstrip": true,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": true,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"60": {
|
484 |
+
"content": "n_diphthong",
|
485 |
+
"lstrip": true,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": true,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"61": {
|
492 |
+
"content": "p_round",
|
493 |
+
"lstrip": true,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": true,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"62": {
|
500 |
+
"content": "n_round",
|
501 |
+
"lstrip": true,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": true,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"63": {
|
508 |
+
"content": "p_voiced",
|
509 |
+
"lstrip": true,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": true,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"64": {
|
516 |
+
"content": "n_voiced",
|
517 |
+
"lstrip": true,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": true,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"65": {
|
524 |
+
"content": "p_bilabial",
|
525 |
+
"lstrip": true,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": true,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"66": {
|
532 |
+
"content": "n_bilabial",
|
533 |
+
"lstrip": true,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": true,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"67": {
|
540 |
+
"content": "p_coronal",
|
541 |
+
"lstrip": true,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": true,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"68": {
|
548 |
+
"content": "n_coronal",
|
549 |
+
"lstrip": true,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": true,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"69": {
|
556 |
+
"content": "p_dorsal",
|
557 |
+
"lstrip": true,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": true,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"70": {
|
564 |
+
"content": "n_dorsal",
|
565 |
+
"lstrip": true,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": true,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"71": {
|
572 |
+
"content": "<s>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"72": {
|
580 |
+
"content": "</s>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"73": {
|
588 |
+
"content": "<unk>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
}
|
595 |
+
},
|
596 |
+
"bos_token": "<s>",
|
597 |
+
"clean_up_tokenization_spaces": true,
|
598 |
+
"do_lower_case": false,
|
599 |
+
"eos_token": "</s>",
|
600 |
+
"model_max_length": 1000000000000000019884624838656,
|
601 |
+
"pad_token": "<pad>",
|
602 |
+
"processor_class": "Wav2Vec2Processor",
|
603 |
+
"replace_word_delimiter_char": " ",
|
604 |
+
"target_lang": null,
|
605 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
606 |
+
"unk_token": "<unk>",
|
607 |
+
"word_delimiter_token": ""
|
608 |
+
}
|
models/SA/vocab.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 0,
|
3 |
+
"n_affricate": 52,
|
4 |
+
"n_alveolar": 2,
|
5 |
+
"n_anterior": 14,
|
6 |
+
"n_approximant": 50,
|
7 |
+
"n_back": 28,
|
8 |
+
"n_bilabial": 66,
|
9 |
+
"n_central": 30,
|
10 |
+
"n_consonant": 32,
|
11 |
+
"n_continuant": 56,
|
12 |
+
"n_coronal": 68,
|
13 |
+
"n_dental": 6,
|
14 |
+
"n_diphthong": 60,
|
15 |
+
"n_dorsal": 70,
|
16 |
+
"n_fricative": 44,
|
17 |
+
"n_front": 26,
|
18 |
+
"n_glottal": 8,
|
19 |
+
"n_high": 22,
|
20 |
+
"n_labial": 10,
|
21 |
+
"n_liquid": 54,
|
22 |
+
"n_long": 36,
|
23 |
+
"n_low": 24,
|
24 |
+
"n_mid": 20,
|
25 |
+
"n_monophthong": 58,
|
26 |
+
"n_nasal": 46,
|
27 |
+
"n_palatal": 4,
|
28 |
+
"n_posterior": 16,
|
29 |
+
"n_retroflex": 18,
|
30 |
+
"n_round": 62,
|
31 |
+
"n_semivowel": 42,
|
32 |
+
"n_short": 38,
|
33 |
+
"n_sonorant": 34,
|
34 |
+
"n_stop": 48,
|
35 |
+
"n_velar": 12,
|
36 |
+
"n_voiced": 64,
|
37 |
+
"n_vowel": 40,
|
38 |
+
"p_affricate": 51,
|
39 |
+
"p_alveolar": 1,
|
40 |
+
"p_anterior": 13,
|
41 |
+
"p_approximant": 49,
|
42 |
+
"p_back": 27,
|
43 |
+
"p_bilabial": 65,
|
44 |
+
"p_central": 29,
|
45 |
+
"p_consonant": 31,
|
46 |
+
"p_continuant": 55,
|
47 |
+
"p_coronal": 67,
|
48 |
+
"p_dental": 5,
|
49 |
+
"p_diphthong": 59,
|
50 |
+
"p_dorsal": 69,
|
51 |
+
"p_fricative": 43,
|
52 |
+
"p_front": 25,
|
53 |
+
"p_glottal": 7,
|
54 |
+
"p_high": 21,
|
55 |
+
"p_labial": 9,
|
56 |
+
"p_liquid": 53,
|
57 |
+
"p_long": 35,
|
58 |
+
"p_low": 23,
|
59 |
+
"p_mid": 19,
|
60 |
+
"p_monophthong": 57,
|
61 |
+
"p_nasal": 45,
|
62 |
+
"p_palatal": 3,
|
63 |
+
"p_posterior": 15,
|
64 |
+
"p_retroflex": 17,
|
65 |
+
"p_round": 61,
|
66 |
+
"p_semivowel": 41,
|
67 |
+
"p_short": 37,
|
68 |
+
"p_sonorant": 33,
|
69 |
+
"p_stop": 47,
|
70 |
+
"p_velar": 11,
|
71 |
+
"p_voiced": 63,
|
72 |
+
"p_vowel": 39
|
73 |
+
}
|
models/d_phonemizer/en_us_cmudict_forward.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2e1fb223d7e027bf7b33052540c6f71d19db6d7fd87ab8671152b8b114501c2
|
3 |
+
size 66725366
|
models/sb_phonemizer/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"speechbrain_interface": "GraphemeToPhoneme"
|
3 |
+
}
|
models/sb_phonemizer/ctc_lin.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c72639caba01630cf5ccc9b287b6eb7b79acc2276aa6f5cc23640640ac8f7ee
|
3 |
+
size 177319
|
models/sb_phonemizer/hyperparams.yaml
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2022-07-09 from:
|
2 |
+
# /notebooks/speechbrain/recipes/LibriSpeech/G2P/hparams/hparams_g2p_rnn.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: LSTM (encoder) + GRU (decoder) (tokenized)
|
6 |
+
# Authors:
|
7 |
+
# Loren Lugosch & Mirco Ravanelli 2020
|
8 |
+
# Artem Ploujnikov 2021
|
9 |
+
# ################################
|
10 |
+
|
11 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
12 |
+
seed: 1234
|
13 |
+
__set_seed: !apply:torch.manual_seed [1234]
|
14 |
+
|
15 |
+
|
16 |
+
# Tokenizers
|
17 |
+
char_tokenize: false
|
18 |
+
char_token_type: unigram # ["unigram", "bpe", "char"]
|
19 |
+
char_token_output: 512
|
20 |
+
char_token_wordwise: true
|
21 |
+
phn_tokenize: false
|
22 |
+
phn_token_type: unigram # ["unigram", "bpe", "char"]
|
23 |
+
phn_token_output: 512 # index(blank/eos/bos/unk) = 0
|
24 |
+
phn_token_wordwise: true
|
25 |
+
character_coverage: 1.0
|
26 |
+
|
27 |
+
|
28 |
+
phonemes_count: 43
|
29 |
+
graphemes_count: 31
|
30 |
+
phonemes_enable_space: true
|
31 |
+
|
32 |
+
# Training Parameters
|
33 |
+
lexicon_epochs: 50
|
34 |
+
lexicon_ctc_epochs: 10
|
35 |
+
lexicon_limit_to_stop: 50 # No stopping by default, can override
|
36 |
+
lexicon_limit_warmup: 50 # No stopping by default, can override
|
37 |
+
sentence_epochs: 13
|
38 |
+
sentence_ctc_epochs: 10
|
39 |
+
sentence_limit_to_stop: 3
|
40 |
+
sentence_limit_warmup: 3
|
41 |
+
homograph_epochs: 50
|
42 |
+
homograph_ctc_epochs: 10
|
43 |
+
homograph_limit_to_stop: 5
|
44 |
+
homograph_limit_warmup: 10
|
45 |
+
lexicon_batch_size: 1024
|
46 |
+
sentence_batch_size: 32
|
47 |
+
homograph_batch_size: 32
|
48 |
+
ctc_weight: 0.5
|
49 |
+
homograph_loss_weight: 2.0
|
50 |
+
lr: 0.002
|
51 |
+
save_for_pretrained: true
|
52 |
+
|
53 |
+
# Model parameters
|
54 |
+
output_neurons: &id004 !apply:speechbrain.utils.hparams.choice
|
55 |
+
|
56 |
+
value: false
|
57 |
+
choices:
|
58 |
+
true: 513
|
59 |
+
false: 43
|
60 |
+
|
61 |
+
enc_num_embeddings: &id005 !apply:speechbrain.utils.hparams.choice
|
62 |
+
value: false
|
63 |
+
choices:
|
64 |
+
true: 513
|
65 |
+
false: 31
|
66 |
+
|
67 |
+
enc_dropout: 0.5
|
68 |
+
enc_neurons: 512
|
69 |
+
enc_num_layers: 4
|
70 |
+
dec_dropout: 0.5
|
71 |
+
dec_neurons: 512
|
72 |
+
dec_att_neurons: 256
|
73 |
+
dec_num_layers: 4
|
74 |
+
embedding_dim: 512
|
75 |
+
|
76 |
+
# Determines whether to use BOS (beginning-of-sequence) or EOS (end-of-sequence) tokens
|
77 |
+
# Available modes:
|
78 |
+
# raw: no BOS/EOS tokens are added
|
79 |
+
# bos: a beginning-of-sequence token is added
|
80 |
+
# eos: an end-of-sequence token is added
|
81 |
+
grapheme_sequence_mode: bos
|
82 |
+
phoneme_sequence_mode: bos
|
83 |
+
|
84 |
+
|
85 |
+
# Special Token information
|
86 |
+
bos_index: 0
|
87 |
+
eos_index: 1
|
88 |
+
blank_index: 2
|
89 |
+
unk_index: 2
|
90 |
+
token_space_index: 512
|
91 |
+
|
92 |
+
|
93 |
+
# Language Model
|
94 |
+
lm_emb_dim: 256 # dimension of the embeddings
|
95 |
+
lm_rnn_size: 512 # dimension of hidden layers
|
96 |
+
lm_layers: 2 # number of hidden layers
|
97 |
+
lm_output_neurons: 43
|
98 |
+
|
99 |
+
# Beam Searcher
|
100 |
+
use_language_model: false
|
101 |
+
beam_search_min_decode_ratio: 0
|
102 |
+
beam_search_max_decode_ratio: 1.0
|
103 |
+
beam_search_beam_size: 16
|
104 |
+
beam_search_beam_size_valid: 16
|
105 |
+
beam_search_eos_threshold: 10.0
|
106 |
+
beam_search_using_max_attn_shift: false
|
107 |
+
beam_search_max_attn_shift: 10
|
108 |
+
beam_search_coverage_penalty: 5.0
|
109 |
+
beam_search_lm_weight: 0.5
|
110 |
+
beam_search_ctc_weight_decode: 0.4
|
111 |
+
beam_search_temperature: 1.25
|
112 |
+
beam_search_temperature_lm: 1.0
|
113 |
+
|
114 |
+
# Word embeddings
|
115 |
+
use_word_emb: true
|
116 |
+
word_emb_model: bert-base-uncased
|
117 |
+
word_emb_dim: 768
|
118 |
+
word_emb_enc_dim: 256
|
119 |
+
word_emb_norm_type: batch
|
120 |
+
|
121 |
+
graphemes: &id028
|
122 |
+
- A
|
123 |
+
- B
|
124 |
+
- C
|
125 |
+
- D
|
126 |
+
- E
|
127 |
+
- F
|
128 |
+
- G
|
129 |
+
- H
|
130 |
+
- I
|
131 |
+
- J
|
132 |
+
- K
|
133 |
+
- L
|
134 |
+
- M
|
135 |
+
- N
|
136 |
+
- O
|
137 |
+
- P
|
138 |
+
- Q
|
139 |
+
- R
|
140 |
+
- S
|
141 |
+
- T
|
142 |
+
- U
|
143 |
+
- V
|
144 |
+
- W
|
145 |
+
- X
|
146 |
+
- Y
|
147 |
+
- Z
|
148 |
+
- "'"
|
149 |
+
- ' '
|
150 |
+
|
151 |
+
phonemes: &id001
|
152 |
+
|
153 |
+
|
154 |
+
- AA
|
155 |
+
- AE
|
156 |
+
- AH
|
157 |
+
- AO
|
158 |
+
- AW
|
159 |
+
- AY
|
160 |
+
- B
|
161 |
+
- CH
|
162 |
+
- D
|
163 |
+
- DH
|
164 |
+
- EH
|
165 |
+
- ER
|
166 |
+
- EY
|
167 |
+
- F
|
168 |
+
- G
|
169 |
+
- HH
|
170 |
+
- IH
|
171 |
+
- IY
|
172 |
+
- JH
|
173 |
+
- K
|
174 |
+
- L
|
175 |
+
- M
|
176 |
+
- N
|
177 |
+
- NG
|
178 |
+
- OW
|
179 |
+
- OY
|
180 |
+
- P
|
181 |
+
- R
|
182 |
+
- S
|
183 |
+
- SH
|
184 |
+
- T
|
185 |
+
- TH
|
186 |
+
- UH
|
187 |
+
- UW
|
188 |
+
- V
|
189 |
+
- W
|
190 |
+
- Y
|
191 |
+
- Z
|
192 |
+
- ZH
|
193 |
+
- ' '
|
194 |
+
|
195 |
+
enc_input_dim: &id003 !apply:speechbrain.lobes.models.g2p.model.input_dim
|
196 |
+
use_word_emb: true
|
197 |
+
word_emb_enc_dim: 256
|
198 |
+
embedding_dim: 512
|
199 |
+
|
200 |
+
|
201 |
+
phn_char_map: &id002 !apply:speechbrain.lobes.models.g2p.dataio.build_token_char_map
|
202 |
+
|
203 |
+
|
204 |
+
# Models
|
205 |
+
tokens: *id001
|
206 |
+
char_phn_map: &id023 !apply:speechbrain.lobes.models.g2p.dataio.flip_map
|
207 |
+
map_dict: *id002
|
208 |
+
enc: &id006 !new:speechbrain.nnet.RNN.LSTM
|
209 |
+
input_shape: [null, null, *id003]
|
210 |
+
bidirectional: true
|
211 |
+
hidden_size: 512
|
212 |
+
num_layers: 4
|
213 |
+
dropout: 0.5
|
214 |
+
|
215 |
+
lin: &id010 !new:speechbrain.nnet.linear.Linear
|
216 |
+
input_size: 512
|
217 |
+
n_neurons: *id004
|
218 |
+
bias: false
|
219 |
+
|
220 |
+
ctc_lin: &id013 !new:speechbrain.nnet.linear.Linear
|
221 |
+
input_size: 1024
|
222 |
+
n_neurons: *id004
|
223 |
+
encoder_emb: &id007 !new:speechbrain.nnet.embedding.Embedding
|
224 |
+
num_embeddings: *id005
|
225 |
+
embedding_dim: 512
|
226 |
+
|
227 |
+
emb: &id008 !new:speechbrain.nnet.embedding.Embedding
|
228 |
+
num_embeddings: *id004
|
229 |
+
embedding_dim: 512
|
230 |
+
|
231 |
+
dec: &id009 !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
232 |
+
enc_dim: 1024
|
233 |
+
input_size: 512
|
234 |
+
rnn_type: gru
|
235 |
+
attn_type: content
|
236 |
+
dropout: 0.5
|
237 |
+
hidden_size: 512
|
238 |
+
attn_dim: 256
|
239 |
+
num_layers: 4
|
240 |
+
|
241 |
+
word_emb_enc: &id012 !new:speechbrain.lobes.models.g2p.model.WordEmbeddingEncoder
|
242 |
+
|
243 |
+
word_emb_dim: 768
|
244 |
+
word_emb_enc_dim: 256
|
245 |
+
norm_type: batch
|
246 |
+
|
247 |
+
word_emb: !apply:speechbrain.lobes.models.g2p.dataio.lazy_init
|
248 |
+
init: !name:speechbrain.wordemb.transformer.TransformerWordEmbeddings
|
249 |
+
model: bert-base-uncased
|
250 |
+
|
251 |
+
log_softmax: &id011 !new:speechbrain.nnet.activations.Softmax
|
252 |
+
apply_log: true
|
253 |
+
|
254 |
+
modules:
|
255 |
+
model: &id014 !new:speechbrain.lobes.models.g2p.model.AttentionSeq2Seq
|
256 |
+
enc: *id006
|
257 |
+
encoder_emb: *id007
|
258 |
+
emb: *id008
|
259 |
+
dec: *id009
|
260 |
+
lin: *id010
|
261 |
+
out: *id011
|
262 |
+
use_word_emb: true
|
263 |
+
word_emb_enc: *id012
|
264 |
+
enc: *id006
|
265 |
+
encoder_emb: *id007
|
266 |
+
emb: *id008
|
267 |
+
dec: *id009
|
268 |
+
lin: *id010
|
269 |
+
ctc_lin: *id013
|
270 |
+
out: *id011
|
271 |
+
word_emb:
|
272 |
+
word_emb_enc: *id012
|
273 |
+
model: *id014
|
274 |
+
lm_model: &id015 !new:speechbrain.lobes.models.RNNLM.RNNLM
|
275 |
+
embedding_dim: 256
|
276 |
+
rnn_layers: 2
|
277 |
+
rnn_neurons: 512
|
278 |
+
output_neurons: 43
|
279 |
+
return_hidden: true
|
280 |
+
|
281 |
+
opt_class: !name:torch.optim.Adam
|
282 |
+
lr: 0.002
|
283 |
+
|
284 |
+
beam_searcher: &id029 !new:speechbrain.decoders.S2SRNNBeamSearcher
|
285 |
+
embedding: *id008
|
286 |
+
decoder: *id009
|
287 |
+
linear: *id010
|
288 |
+
ctc_linear: *id013
|
289 |
+
bos_index: 0
|
290 |
+
eos_index: 1
|
291 |
+
blank_index: 2
|
292 |
+
min_decode_ratio: 0
|
293 |
+
max_decode_ratio: 1.0
|
294 |
+
beam_size: 16
|
295 |
+
eos_threshold: 10.0
|
296 |
+
using_max_attn_shift: false
|
297 |
+
max_attn_shift: 10
|
298 |
+
coverage_penalty: 5.0
|
299 |
+
ctc_weight: 0.4
|
300 |
+
|
301 |
+
beam_searcher_valid: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
302 |
+
embedding: *id008
|
303 |
+
decoder: *id009
|
304 |
+
linear: *id010
|
305 |
+
ctc_linear: *id013
|
306 |
+
bos_index: 0
|
307 |
+
eos_index: 1
|
308 |
+
blank_index: 2
|
309 |
+
min_decode_ratio: 0
|
310 |
+
max_decode_ratio: 1.0
|
311 |
+
beam_size: 16
|
312 |
+
eos_threshold: 10.0
|
313 |
+
using_max_attn_shift: false
|
314 |
+
max_attn_shift: 10
|
315 |
+
coverage_penalty: 5.0
|
316 |
+
ctc_weight: 0.4
|
317 |
+
|
318 |
+
beam_searcher_lm: !new:speechbrain.decoders.seq2seq.S2SRNNBeamSearchLM
|
319 |
+
embedding: *id008
|
320 |
+
decoder: *id009
|
321 |
+
linear: *id010
|
322 |
+
ctc_linear: *id013
|
323 |
+
language_model: *id015
|
324 |
+
bos_index: 0
|
325 |
+
eos_index: 1
|
326 |
+
blank_index: 2
|
327 |
+
min_decode_ratio: 0
|
328 |
+
max_decode_ratio: 1.0
|
329 |
+
beam_size: 16
|
330 |
+
eos_threshold: 10.0
|
331 |
+
using_max_attn_shift: false
|
332 |
+
max_attn_shift: 10
|
333 |
+
coverage_penalty: 5.0
|
334 |
+
ctc_weight: 0.4
|
335 |
+
lm_weight: 0.5
|
336 |
+
temperature: 1.25
|
337 |
+
temperature_lm: 1.0
|
338 |
+
|
339 |
+
|
340 |
+
lr_annealing: &id018 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
341 |
+
initial_value: 0.002
|
342 |
+
improvement_threshold: 0.0
|
343 |
+
annealing_factor: 0.8
|
344 |
+
patient: 0
|
345 |
+
|
346 |
+
homograph_extractor: !new:speechbrain.lobes.models.g2p.homograph.SubsequenceExtractor
|
347 |
+
|
348 |
+
seq_cost: &id016 !name:speechbrain.nnet.losses.nll_loss
|
349 |
+
|
350 |
+
label_smoothing: 0.1
|
351 |
+
|
352 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
353 |
+
blank_index: 2
|
354 |
+
|
355 |
+
seq_cost_metric: &id017 !name:speechbrain.nnet.losses.nll_loss
|
356 |
+
|
357 |
+
label_smoothing: 0.1
|
358 |
+
reduction: batch
|
359 |
+
|
360 |
+
homograph_cost: !new:speechbrain.lobes.models.g2p.homograph.SubsequenceLoss
|
361 |
+
seq_cost: *id016
|
362 |
+
seq_stats: !name:speechbrain.utils.metric_stats.MetricStats
|
363 |
+
metric: *id017
|
364 |
+
seq_stats_homograph: !name:speechbrain.utils.metric_stats.MetricStats
|
365 |
+
metric: *id017
|
366 |
+
classification_stats_homograph: !name:speechbrain.utils.metric_stats.ClassificationStats
|
367 |
+
|
368 |
+
per_stats: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
369 |
+
per_stats_homograph: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
370 |
+
|
371 |
+
|
372 |
+
model_output_keys:
|
373 |
+
- p_seq
|
374 |
+
- char_lens
|
375 |
+
- encoder_out
|
376 |
+
|
377 |
+
grapheme_encoder: &id027 !new:speechbrain.dataio.encoder.TextEncoder
|
378 |
+
phoneme_encoder: &id024 !new:speechbrain.dataio.encoder.TextEncoder
|
379 |
+
|
380 |
+
|
381 |
+
grapheme_tokenizer: !apply:speechbrain.lobes.models.g2p.dataio.lazy_init
|
382 |
+
init: !name:speechbrain.tokenizers.SentencePiece.SentencePiece
|
383 |
+
model_dir: grapheme_tokenizer
|
384 |
+
bos_id: 0
|
385 |
+
eos_id: 1
|
386 |
+
unk_id: 2
|
387 |
+
vocab_size: 512
|
388 |
+
annotation_train: tokenizer_annotation_train.json
|
389 |
+
annotation_read: char
|
390 |
+
model_type: unigram # ["unigram", "bpe", "char"]
|
391 |
+
character_coverage: 1.0
|
392 |
+
annotation_format: json
|
393 |
+
text_file: grapheme_annotations.txt
|
394 |
+
|
395 |
+
phoneme_tokenizer: &id022 !apply:speechbrain.lobes.models.g2p.dataio.lazy_init
|
396 |
+
init: !name:speechbrain.tokenizers.SentencePiece.SentencePiece
|
397 |
+
model_dir: phoneme_tokenizer
|
398 |
+
bos_id: 0
|
399 |
+
eos_id: 1
|
400 |
+
unk_id: 2
|
401 |
+
vocab_size: 512
|
402 |
+
annotation_train: tokenizer_annotation_train.json
|
403 |
+
annotation_read: phn
|
404 |
+
model_type: unigram # ["unigram", "bpe", "char"]
|
405 |
+
character_coverage: 1.0
|
406 |
+
annotation_list_to_check: [tokenizer_annotation_valid.json]
|
407 |
+
annotation_format: json
|
408 |
+
text_file: phoneme_annotations.txt
|
409 |
+
|
410 |
+
out_phoneme_decoder_tok: &id025 !apply:speechbrain.lobes.models.g2p.dataio.char_map_detokenize
|
411 |
+
tokenizer: *id022
|
412 |
+
char_map: *id023
|
413 |
+
token_space_index: 512
|
414 |
+
wordwise: true
|
415 |
+
|
416 |
+
out_phoneme_decoder_raw: &id026 !name:speechbrain.lobes.models.g2p.dataio.text_decode
|
417 |
+
|
418 |
+
encoder: *id024
|
419 |
+
out_phoneme_decoder: !apply:speechbrain.utils.hparams.choice
|
420 |
+
value: false
|
421 |
+
choices:
|
422 |
+
true: *id025
|
423 |
+
false: *id026
|
424 |
+
encode_pipeline:
|
425 |
+
batch: false
|
426 |
+
use_padded_data: true
|
427 |
+
output_keys:
|
428 |
+
- grapheme_list
|
429 |
+
- grapheme_encoded_list
|
430 |
+
- grapheme_encoded
|
431 |
+
- word_emb
|
432 |
+
init:
|
433 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.enable_eos_bos
|
434 |
+
encoder: *id027
|
435 |
+
tokens: *id028
|
436 |
+
bos_index: 0
|
437 |
+
eos_index: 1
|
438 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.enable_eos_bos
|
439 |
+
encoder: *id024
|
440 |
+
tokens: *id001
|
441 |
+
bos_index: 0
|
442 |
+
eos_index: 1
|
443 |
+
steps:
|
444 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.clean_pipeline
|
445 |
+
graphemes: *id028
|
446 |
+
takes: txt
|
447 |
+
provides: txt_cleaned
|
448 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.grapheme_pipeline
|
449 |
+
grapheme_encoder: *id027
|
450 |
+
takes: txt_cleaned
|
451 |
+
provides:
|
452 |
+
- grapheme_list
|
453 |
+
- grapheme_encoded_list
|
454 |
+
- grapheme_encoded_raw
|
455 |
+
|
456 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.add_bos_eos
|
457 |
+
encoder: *id027
|
458 |
+
takes: grapheme_encoded_list
|
459 |
+
provides:
|
460 |
+
- grapheme_encoded
|
461 |
+
- grapheme_len
|
462 |
+
- grapheme_encoded_eos
|
463 |
+
- grapheme_len_eos
|
464 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.word_emb_pipeline
|
465 |
+
word_emb: !ref <word_emb>
|
466 |
+
grapheme_encoder: !ref <grapheme_encoder>
|
467 |
+
use_word_emb: !ref <use_word_emb>
|
468 |
+
takes:
|
469 |
+
- txt
|
470 |
+
- grapheme_encoded
|
471 |
+
- grapheme_len
|
472 |
+
provides: word_emb
|
473 |
+
|
474 |
+
decode_pipeline:
|
475 |
+
batch: true
|
476 |
+
output_keys:
|
477 |
+
- phonemes
|
478 |
+
steps:
|
479 |
+
- func: !name:speechbrain.lobes.models.g2p.dataio.beam_search_pipeline
|
480 |
+
beam_searcher: *id029
|
481 |
+
takes:
|
482 |
+
- char_lens
|
483 |
+
- encoder_out
|
484 |
+
provides:
|
485 |
+
- hyps
|
486 |
+
- scores
|
487 |
+
- func: !apply:speechbrain.utils.hparams.choice
|
488 |
+
value: false
|
489 |
+
choices:
|
490 |
+
true: !apply:speechbrain.lobes.models.g2p.dataio.char_map_detokenize
|
491 |
+
tokenizer: *id022
|
492 |
+
char_map: *id023
|
493 |
+
token_space_index: 512
|
494 |
+
wordwise: true
|
495 |
+
false: !name:speechbrain.lobes.models.g2p.dataio.phoneme_decoder_pipeline
|
496 |
+
phoneme_encoder: *id024
|
497 |
+
takes:
|
498 |
+
- hyps
|
499 |
+
provides:
|
500 |
+
- phonemes
|
501 |
+
|
502 |
+
|
503 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
504 |
+
loadables:
|
505 |
+
model: *id014
|
506 |
+
ctc_lin: *id013
|
507 |
+
|
models/sb_phonemizer/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71bf7a7b290f88de5fdd7364fa4ab249bdd94a29e6cdc742ee6f69edeae64f61
|
3 |
+
size 128643257
|
phoneme_vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "aa": 1, "ae": 2, "ah": 3, "ao": 4, "aw": 5, "ay": 6, "eh": 7, "er": 8, "ey": 9, "ih": 10, "iy": 11, "ow": 12, "oy": 13, "uh": 14, "uw": 15, "b": 16, "ch": 17, "d": 18, "dh": 19, "f": 20, "g": 21, "hh": 22, "jh": 23, "k": 24, "l": 25, "m": 26, "n": 27, "nd": 28, "ng": 29, "p": 30, "r": 31, "s": 32, "sh": 33, "sil": 34, "t": 35, "th": 36, "v": 37, "w": 38, "y": 39, "z": 40, "zh": 41}
|
pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/ctc_lin.ckpt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/Users/z5173707/root/projects/phonological/Demo/Phone-aid/models/sb_phonemizer/ctc_lin.ckpt
|
pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/custom.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/Users/z5173707/root/projects/phonological/Demo/Phone-aid/models/sb_phonemizer/custom.py
|
pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/hyperparams.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/Users/z5173707/root/projects/phonological/Demo/Phone-aid/models/sb_phonemizer/hyperparams.yaml
|
pretrained_models/GraphemeToPhoneme-f9e3219c75cc17c936d5a85994b73823/model.ckpt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/Users/z5173707/root/projects/phonological/Demo/Phone-aid/models/sb_phonemizer/model.ckpt
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.16.1
|
2 |
+
deep-phonemizer==0.0.19
|
3 |
+
speechbrain==0.5.16
|
4 |
+
cmudict==1.0.22
|
5 |
+
fire==0.6.0
|
6 |
+
python-Levenshtein==0.25.0
|
7 |
+
librosa==0.10.1
|
8 |
+
transformers==4.37.2
|
transcriber.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fire
|
2 |
+
import logging
|
3 |
+
import sys, os
|
4 |
+
import yaml
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import librosa
|
8 |
+
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2Processor, Wav2Vec2ForCTC
|
9 |
+
import transformers
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
# Setup logging
|
14 |
+
logger.setLevel(logging.ERROR)
|
15 |
+
console_handler = logging.StreamHandler()
|
16 |
+
formater = logging.Formatter(fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
17 |
+
datefmt="%m/%d/%Y %H:%M:%S",)
|
18 |
+
console_handler.setFormatter(formater)
|
19 |
+
console_handler.setLevel(logging.ERROR)
|
20 |
+
|
21 |
+
logger.addHandler(console_handler)
|
22 |
+
|
23 |
+
|
24 |
+
class transcribe_SA():
|
25 |
+
def __init__(self, model_path, verbose=0):
|
26 |
+
if verbose == 0:
|
27 |
+
logger.setLevel(logging.ERROR)
|
28 |
+
transformers.logging.set_verbosity_error()
|
29 |
+
#console_handler.setLevel(logging.ERROR)
|
30 |
+
elif verbose == 1:
|
31 |
+
logger.setLevel(logging.WARNING)
|
32 |
+
transformers.logging.set_verbosity_warning()
|
33 |
+
#console_handler.setLevel(logging.WARNING)
|
34 |
+
else:
|
35 |
+
logger.setLevel(logging.INFO)
|
36 |
+
transformers.logging.set_verbosity_info()
|
37 |
+
#console_handler.setLevel(logging.INFO)
|
38 |
+
# Read YAML file
|
39 |
+
logger.info('Init Object')
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
self.accelerate = True
|
42 |
+
self.device = torch.device('cuda')
|
43 |
+
self.n_devices = torch.cuda.device_count()
|
44 |
+
assert self.n_devices == 1, 'Support only single GPU. Please use CUDA_VISIBLE_DEVICES=gpu_index if you have multiple gpus' #Currently support only single gpu
|
45 |
+
else:
|
46 |
+
self.device = torch.device('cpu')
|
47 |
+
self.n_devices = 1
|
48 |
+
self.model_path = model_path
|
49 |
+
self.load_model()
|
50 |
+
self.get_available_attributes()
|
51 |
+
self.get_att_binary_group_indexs()
|
52 |
+
|
53 |
+
def load_model(self):
|
54 |
+
if not os.path.exists(self.model_path):
|
55 |
+
logger.error(f'Model file {self.model_path} is not exist')
|
56 |
+
raise FileNotFoundError
|
57 |
+
|
58 |
+
self.processor = Wav2Vec2Processor.from_pretrained(self.model_path)
|
59 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(self.model_path)
|
60 |
+
self.pad_token_id = self.processor.tokenizer.pad_token_id
|
61 |
+
self.sampling_rate = self.processor.feature_extractor.sampling_rate
|
62 |
+
|
63 |
+
def get_available_attributes(self):
|
64 |
+
if not hasattr(self, 'model'):
|
65 |
+
logger.error('model not loaded, call load_model first!')
|
66 |
+
raise AttributeError("model not defined")
|
67 |
+
att_list = set(self.processor.tokenizer.get_vocab().keys()) - set(self.processor.tokenizer.all_special_tokens)
|
68 |
+
att_list = [p.replace('p_','') for p in att_list if p[0]=='p']
|
69 |
+
self.att_list = att_list
|
70 |
+
|
71 |
+
def print_availabel_attributes(self):
|
72 |
+
print(self.att_list)
|
73 |
+
|
74 |
+
|
75 |
+
def get_att_binary_group_indexs(self):
|
76 |
+
self.group_ids = [] #Each group contains the token_ids of [<PAD>, n_att, p_att] sorted by their token ids
|
77 |
+
for i, att in enumerate(self.att_list):
|
78 |
+
n_indx = self.processor.tokenizer.convert_tokens_to_ids(f'n_{att}')
|
79 |
+
p_indx = self.processor.tokenizer.convert_tokens_to_ids(f'p_{att}')
|
80 |
+
self.group_ids.append(sorted([self.pad_token_id, n_indx, p_indx]))
|
81 |
+
|
82 |
+
def decode_att(self, logits, att): #Need to lowercase when first read from the user
|
83 |
+
mask = torch.zeros(logits.size()[2], dtype = torch.bool)
|
84 |
+
try:
|
85 |
+
i = self.att_list.index(att)
|
86 |
+
except ValueError:
|
87 |
+
logger.error(f'The given attribute {att} not supported in the given model {self.model_path}')
|
88 |
+
raise
|
89 |
+
mask[self.group_ids[i]] = True
|
90 |
+
logits_g = logits[:,:,mask]
|
91 |
+
pred_ids = torch.argmax(logits_g,dim=-1)
|
92 |
+
pred_ids = pred_ids.cpu().apply_(lambda x: self.group_ids[i][x])
|
93 |
+
pred = self.processor.batch_decode(pred_ids,spaces_between_special_tokens=True)[0].split()
|
94 |
+
return list(map(lambda x:{f'p_{att}':'+',f'n_{att}':'-'}[x], pred))
|
95 |
+
|
96 |
+
def read_audio_file(self, audio_file):
|
97 |
+
if not os.path.exists(audio_file):
|
98 |
+
logger.error(f'Audio file {audio_file} is not exist')
|
99 |
+
raise FileNotFoundError
|
100 |
+
y, _ = librosa.load(audio_file, sr=self.sampling_rate)
|
101 |
+
|
102 |
+
return y
|
103 |
+
|
104 |
+
|
105 |
+
def get_logits(self, y):
|
106 |
+
|
107 |
+
input_values = self.processor(audio=y, sampling_rate=self.sampling_rate, return_tensors="pt").input_values
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
logits = self.model(input_values).logits
|
111 |
+
|
112 |
+
return logits
|
113 |
+
|
114 |
+
|
115 |
+
def check_identical_phonemes(self, df_p2att):
|
116 |
+
identical_phonemes = []
|
117 |
+
for index,row in df_p2att.iterrows():
|
118 |
+
mask = df_p2att.eq(row).all(axis=1)
|
119 |
+
indexes = df_p2att[mask].index.values
|
120 |
+
if len(indexes) > 1:
|
121 |
+
identical_phonemes.append(tuple(indexes))
|
122 |
+
if identical_phonemes:
|
123 |
+
logger.warning('The following phonemes has identical phonological features given the phonological features used in the model. If using fixed weight layer, these phonemes will be confused with each other')
|
124 |
+
identical_phonemes = set(identical_phonemes)
|
125 |
+
for x in identical_phonemes:
|
126 |
+
logger.warning(f"{','.join(x)}")
|
127 |
+
|
128 |
+
def read_phoneme2att(self,p2att_file):
|
129 |
+
|
130 |
+
if not os.path.exists(p2att_file):
|
131 |
+
logger.error(f'Phonological matrix file {p2att_file} is not exist')
|
132 |
+
raise FileNotFoundError(f'{p2att_file}')
|
133 |
+
|
134 |
+
df_p2att = pd.read_csv(p2att_file, index_col=0)
|
135 |
+
|
136 |
+
self.check_identical_phonemes(df_p2att)
|
137 |
+
not_supported = set(df_p2att.columns) - set(self.att_list)
|
138 |
+
if not_supported:
|
139 |
+
logger.warning(f"Attribute/s {','.join(not_supported)} is not supported by the model {self.model_path} and will be ignored. To get available attributes of the selected model run transcribe --model_path=/path/to/model print_availabel_attributes")
|
140 |
+
df_p2att = df_p2att.drop(columns=not_supported)
|
141 |
+
|
142 |
+
self.phoneme_list = df_p2att.index.values
|
143 |
+
self.p2att_map = {}
|
144 |
+
for i, r in df_p2att.iterrows():
|
145 |
+
phoneme = i
|
146 |
+
self.p2att_map[phoneme] = []
|
147 |
+
for att in r.index.values:
|
148 |
+
if f'p_{att}' not in self.processor.tokenizer.vocab:
|
149 |
+
logger.warn(f'Attribute {att} is not supported by the model {self.model_path} and will be ignored. To get available attributes of the selected model run transcribe --model_path=/path/to/model print_availabel_attributes')
|
150 |
+
continue
|
151 |
+
value = r[att]
|
152 |
+
if value == 0:
|
153 |
+
self.p2att_map[phoneme].append(f'n_{att}')
|
154 |
+
elif value == 1:
|
155 |
+
self.p2att_map[phoneme].append(f'p_{att}')
|
156 |
+
else:
|
157 |
+
logger.error(f'Invalid value of {value} for attribute {att} of phoneme {phoneme}. Values in the phoneme to attribute map should be either 0 or 1')
|
158 |
+
raise ValueError(f'{value} should be 0 or 1')
|
159 |
+
|
160 |
+
|
161 |
+
def create_phoneme_tokenizer(self):
|
162 |
+
vocab_list = self.phoneme_list
|
163 |
+
vocab_dict = {v: k+1 for k, v in enumerate(vocab_list)}
|
164 |
+
vocab_dict['<pad>'] = 0
|
165 |
+
vocab_dict = dict(sorted(vocab_dict.items(), key= lambda x: x[1]))
|
166 |
+
vocab_file = 'phoneme_vocab.json'
|
167 |
+
with open(vocab_file, 'w') as f:
|
168 |
+
json.dump(vocab_dict, f)
|
169 |
+
#Build processor
|
170 |
+
self.phoneme_tokenizer = Wav2Vec2CTCTokenizer(vocab_file, pad_token="<pad>", word_delimiter_token="")
|
171 |
+
|
172 |
+
def create_phonological_matrix(self):
|
173 |
+
self.phonological_matrix = torch.zeros((self.phoneme_tokenizer.vocab_size, self.processor.tokenizer.vocab_size)).type(torch.FloatTensor)
|
174 |
+
self.phonological_matrix[self.phoneme_tokenizer.pad_token_id, self.processor.tokenizer.pad_token_id] = 1
|
175 |
+
for p in self.phoneme_list:
|
176 |
+
for att in self.p2att_map[p]:
|
177 |
+
self.phonological_matrix[self.phoneme_tokenizer.convert_tokens_to_ids(p), self.processor.tokenizer.convert_tokens_to_ids(att)] = 1
|
178 |
+
|
179 |
+
|
180 |
+
#This function gets the attribute logits from the output layer and convert to phonemes
|
181 |
+
#Input is a sequence of logits (one vector per frame) and output phoneme sequence
|
182 |
+
#Note that this is CTC so number of output phonemes is not equal to number of input frames
|
183 |
+
def decode_phoneme(self,logits):
|
184 |
+
def masked_log_softmax(vector: torch.Tensor, mask: torch.Tensor, dim: int = -1) -> torch.Tensor:
|
185 |
+
if mask is not None:
|
186 |
+
mask = mask.float()
|
187 |
+
while mask.dim() < vector.dim():
|
188 |
+
mask = mask.unsqueeze(1)
|
189 |
+
# vector + mask.log() is an easy way to zero out masked elements in logspace, but it
|
190 |
+
# results in nans when the whole vector is masked. We need a very small value instead of a
|
191 |
+
# zero in the mask for these cases. log(1 + 1e-45) is still basically 0, so we can safely
|
192 |
+
# just add 1e-45 before calling mask.log(). We use 1e-45 because 1e-46 is so small it
|
193 |
+
# becomes 0 - this is just the smallest value we can actually use.
|
194 |
+
vector = vector + (mask + 1e-45).log()
|
195 |
+
return torch.nn.functional.log_softmax(vector, dim=dim)
|
196 |
+
|
197 |
+
log_props_all_masked = []
|
198 |
+
for i in range(len(self.att_list)):
|
199 |
+
mask = torch.zeros(logits.size()[2], dtype = torch.bool)
|
200 |
+
mask[self.group_ids[i]] = True
|
201 |
+
mask.unsqueeze_(0).unsqueeze_(0)
|
202 |
+
log_probs = masked_log_softmax(vector=logits, mask=mask, dim=-1).masked_fill(~mask,0)
|
203 |
+
log_props_all_masked.append(log_probs)
|
204 |
+
log_probs_cat = torch.stack(log_props_all_masked, dim=0).sum(dim=0)
|
205 |
+
log_probs_phoneme = torch.matmul(self.phonological_matrix,log_probs_cat.transpose(1,2)).transpose(1,2).type(torch.FloatTensor)
|
206 |
+
pred_ids = torch.argmax(log_probs_phoneme,dim=-1)
|
207 |
+
pred = self.phoneme_tokenizer.batch_decode(pred_ids,spaces_between_special_tokens=True)[0]
|
208 |
+
return pred
|
209 |
+
|
210 |
+
|
211 |
+
def print_human_readable(self, output, with_phoneme = False):
|
212 |
+
column_widths = []
|
213 |
+
rows = []
|
214 |
+
if with_phoneme:
|
215 |
+
column_widths.append(max([len(att['Name']) for att in output['Attributes']]+[len('Phoneme')]))
|
216 |
+
column_widths.extend([5]*max([len(att['Pattern']) for att in output['Attributes']]+[len(output['Phoneme']['symbols'])]))
|
217 |
+
rows.append(('Phoneme'.center(column_widths[0]), *[s.center(column_widths[j+1]) for j,s in enumerate(output['Phoneme']['symbols'])]))
|
218 |
+
else:
|
219 |
+
column_widths.append(max([len(att['Name']) for att in output['Attributes']]))
|
220 |
+
column_widths.extend([5]*max([len(att['Pattern']) for att in output['Attributes']]))
|
221 |
+
for i in range(len(output['Attributes'])):
|
222 |
+
att = output['Attributes'][i]
|
223 |
+
rows.append((att['Name'].center(column_widths[0]), *[s.center(column_widths[j+1]) for j,s in enumerate(att['Pattern'])]))
|
224 |
+
out_string = ''
|
225 |
+
for row in rows:
|
226 |
+
out_string += '|'.join(row)
|
227 |
+
out_string += '\n'
|
228 |
+
return out_string
|
229 |
+
|
230 |
+
def transcribe(self, audio_file,
|
231 |
+
attributes='all',
|
232 |
+
phonological_matrix_file = None,
|
233 |
+
human_readable = True):
|
234 |
+
|
235 |
+
|
236 |
+
output = {}
|
237 |
+
output['wav_file_path'] = audio_file
|
238 |
+
output['Attributes'] = []
|
239 |
+
output['Phoneme'] = {}
|
240 |
+
|
241 |
+
#Initiate the model
|
242 |
+
#self.load_model()
|
243 |
+
#self.get_available_attributes()
|
244 |
+
#self.get_att_binary_group_indexs()
|
245 |
+
|
246 |
+
if attributes == 'all':
|
247 |
+
target_attributes = self.att_list
|
248 |
+
else:
|
249 |
+
attributes = attributes if isinstance(attributes,tuple) else (attributes,)
|
250 |
+
target_attributes = [att.lower() for att in attributes if att.lower() in self.att_list]
|
251 |
+
|
252 |
+
if not target_attributes:
|
253 |
+
logger.error(f'None of the given attributes is supported by model {self.model_path}. To get available attributes of the selected model run transcribe --model_path=/path/to/model get_available_attributes')
|
254 |
+
raise ValueError("Invalid attributes")
|
255 |
+
|
256 |
+
#Process audio
|
257 |
+
y = self.read_audio_file(audio_file)
|
258 |
+
self.logits = self.get_logits(y)
|
259 |
+
|
260 |
+
for att in target_attributes:
|
261 |
+
output['Attributes'].append({'Name':att, 'Pattern' : self.decode_att(self.logits, att)})
|
262 |
+
|
263 |
+
if phonological_matrix_file:
|
264 |
+
self.read_phoneme2att(phonological_matrix_file)
|
265 |
+
self.create_phoneme_tokenizer()
|
266 |
+
self.create_phonological_matrix()
|
267 |
+
output['Phoneme']['symbols'] = self.decode_phoneme(self.logits).split()
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
json_string = json.dumps(output, indent=4)
|
272 |
+
if human_readable:
|
273 |
+
return self.print_human_readable(output, phonological_matrix_file!=None)
|
274 |
+
else:
|
275 |
+
return json_string
|
276 |
+
#return json_string
|
277 |
+
|
278 |
+
|
279 |
+
def main():
|
280 |
+
fire.Fire(transcribe_SA)
|
281 |
+
|
282 |
+
if __name__ == '__main__':
|
283 |
+
main()
|