Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- README.md +6 -8
- app.py +196 -0
- requirements.txt +8 -0
- trip_index.faiss +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
trip_index.faiss filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: TripPlanner
|
3 |
+
emoji: ✈️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
license: mit
|
10 |
+
short_description: 'Your personal AI trip planner! ✈️'
|
11 |
+
---
|
|
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
from transformers import pipeline
|
7 |
+
import time
|
8 |
+
import ast
|
9 |
+
import re
|
10 |
+
|
11 |
+
# --- 1. DATA LOADING AND INITIALIZATION ---
|
12 |
+
print("===== Application Startup =====")
|
13 |
+
start_time = time.time()
|
14 |
+
|
15 |
+
# Load the travel dataset and limit to the first 20,000 rows (same as index)
|
16 |
+
print("Loading TravelPlanner dataset...")
|
17 |
+
dataset = load_dataset("osunlp/TravelPlanner", "test")
|
18 |
+
print("Dataset ready.")
|
19 |
+
|
20 |
+
# --- 2. EMBEDDING AND RECOMMENDATION ENGINE ---
|
21 |
+
print("Loading embedding model...")
|
22 |
+
model_name = "all-mpnet-base-v2"
|
23 |
+
embedding_model = SentenceTransformer(f"sentence-transformers/{model_name}")
|
24 |
+
|
25 |
+
index_file = "trip_index.faiss"
|
26 |
+
|
27 |
+
print(f"Loading FAISS index from {index_file}...")
|
28 |
+
|
29 |
+
try:
|
30 |
+
index = faiss.read_index(index_file)
|
31 |
+
print(f"Index is ready. Total vectors in index: {index.ntotal}")
|
32 |
+
except RuntimeError:
|
33 |
+
print(f"Error: FAISS index file '{index_file}' not found.")
|
34 |
+
print("Please run the `build_index.py` script first to create the index.")
|
35 |
+
exit()
|
36 |
+
|
37 |
+
|
38 |
+
# --- 3. SYNTHETIC GENERATION ---
|
39 |
+
def format_plan_details(plan_string):
|
40 |
+
"""
|
41 |
+
Parses and formats the raw plan string from the dataset into readable Markdown.
|
42 |
+
"""
|
43 |
+
# If the plan is not in the expected dictionary format, return it as is.
|
44 |
+
if not plan_string or not plan_string.strip().startswith('['):
|
45 |
+
return plan_string
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Safely parse the string representation of a list of dictionaries
|
49 |
+
plan_list = ast.literal_eval(plan_string)
|
50 |
+
except (ValueError, SyntaxError):
|
51 |
+
# If parsing fails, return the original string to avoid crashing
|
52 |
+
return plan_string
|
53 |
+
|
54 |
+
formatted_sections = []
|
55 |
+
for section in plan_list:
|
56 |
+
description = section.get('Description', 'Details')
|
57 |
+
content = section.get('Content', '').strip()
|
58 |
+
|
59 |
+
# Add a bold title for each section
|
60 |
+
formatted_sections.append(f"#### {description}")
|
61 |
+
|
62 |
+
# Use specific formatting based on the section's description
|
63 |
+
if any(keyword in description for keyword in ['Attractions', 'Restaurants', 'Accommodations', 'Flight']):
|
64 |
+
lines = content.split('\n')
|
65 |
+
if lines:
|
66 |
+
# Make the header bold
|
67 |
+
formatted_sections.append(f"**{lines[0]}**")
|
68 |
+
# Format the rest of the lines as a clean, bulleted list
|
69 |
+
for item in lines[1:]:
|
70 |
+
clean_item = ' '.join(item.split()) # Remove extra whitespace
|
71 |
+
if clean_item:
|
72 |
+
formatted_sections.append(f"- {clean_item}")
|
73 |
+
|
74 |
+
elif 'Self-driving' in description or 'Taxi' in description:
|
75 |
+
# Make simple travel descriptions more readable
|
76 |
+
mode_emoji = "🚗" if 'Self-driving' in description else "🚕"
|
77 |
+
formatted_sections.append(f"- {mode_emoji} {content.replace(', ', ', ')}")
|
78 |
+
|
79 |
+
else:
|
80 |
+
# Default formatting for any other type of content
|
81 |
+
formatted_sections.append(content)
|
82 |
+
|
83 |
+
# Add a newline for spacing between sections
|
84 |
+
formatted_sections.append("")
|
85 |
+
|
86 |
+
return "\n".join(formatted_sections)
|
87 |
+
|
88 |
+
def get_recommendations_and_generate(query_text, k=3):
|
89 |
+
# 1. Get Recommendations from existing data
|
90 |
+
query_vector = embedding_model.encode([query_text])
|
91 |
+
query_vector = np.array(query_vector, dtype=np.float32)
|
92 |
+
distances, indices = index.search(query_vector, k)
|
93 |
+
|
94 |
+
results = []
|
95 |
+
for idx_numpy in indices[0]:
|
96 |
+
idx = int(idx_numpy)
|
97 |
+
trip_plan = {
|
98 |
+
"dest": dataset['test']['dest'][idx],
|
99 |
+
"days": dataset['test']['days'][idx],
|
100 |
+
"reference_information": dataset['test']['reference_information'][idx]
|
101 |
+
}
|
102 |
+
results.append(trip_plan)
|
103 |
+
|
104 |
+
while len(results) < 3:
|
105 |
+
results.append({"dest": "No trip plan found", "days":"", "reference_information": ""})
|
106 |
+
|
107 |
+
# 2. Create a prompt for the generative model
|
108 |
+
prompt = f"Write a complete travel plan that includes a title and a day-by-day itinerary. The trip must be about: {query_text}."
|
109 |
+
print("Loading generative model...")
|
110 |
+
generator = pipeline('text-generation', model='gpt2')
|
111 |
+
|
112 |
+
# 3. Generate 10 new, creative trip ideas
|
113 |
+
print("Generating 10 synthetic trip ideas...")
|
114 |
+
generated_outputs = generator(
|
115 |
+
prompt,
|
116 |
+
max_new_tokens=250, # Increased tokens for more detailed plans
|
117 |
+
num_return_sequences=10,
|
118 |
+
pad_token_id=50256
|
119 |
+
)
|
120 |
+
|
121 |
+
# 4. Find the best trip out of the 10 generated
|
122 |
+
print("Finding the most relevant generated trip...")
|
123 |
+
generated_texts = [output['generated_text'].replace(prompt, "").strip() for output in generated_outputs]
|
124 |
+
|
125 |
+
# Embed all 10 generated texts
|
126 |
+
generated_embeddings = embedding_model.encode(generated_texts)
|
127 |
+
|
128 |
+
# Calculate cosine similarity between the user's query and each generated text
|
129 |
+
similarities = util.cos_sim(query_vector, generated_embeddings)
|
130 |
+
|
131 |
+
# Find the index of the most similar generated trip
|
132 |
+
best_recipe_index = np.argmax(similarities)
|
133 |
+
best_generated_trip = generated_texts[best_recipe_index]
|
134 |
+
|
135 |
+
return results[0], results[1], results[2], best_generated_trip
|
136 |
+
|
137 |
+
# --- 4. GRADIO USER INTERFACE ---
|
138 |
+
def format_trip_plan(trip):
|
139 |
+
# Formats the recommended trips with markdown
|
140 |
+
if not trip or 'reference_information' not in trip:
|
141 |
+
return "### No similar trip plan found."
|
142 |
+
formatted_plan = format_plan_details(trip['reference_information'])
|
143 |
+
return f"### {trip['days']}-days trip to {trip['dest'].upper()}\n**Suggested Plan:**\n{formatted_plan}"
|
144 |
+
|
145 |
+
def format_generated_trip(trip_text):
|
146 |
+
return trip_text
|
147 |
+
|
148 |
+
def trip_planner_wizard(destination, days):
|
149 |
+
# Combine user inputs into a single query for processing
|
150 |
+
days = int(days) # Ensure days is an integer for the f-string
|
151 |
+
query_text = f"a {days}-day trip to {destination}"
|
152 |
+
rec1, rec2, rec3, gen_rec_text = get_recommendations_and_generate(query_text)
|
153 |
+
return format_trip_plan(rec1), format_trip_plan(rec2), format_trip_plan(rec3), format_generated_trip(gen_rec_text)
|
154 |
+
|
155 |
+
end_time = time.time()
|
156 |
+
print(f"Models and data loaded in {end_time - start_time:.2f} seconds.")
|
157 |
+
|
158 |
+
# Gradio Interface
|
159 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
160 |
+
gr.Markdown("# ✈️ TripPlanner AI")
|
161 |
+
gr.Markdown("Enter your destination and desired trip length, and get plan recommendations plus a new AI-generated idea!")
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
destination_input = gr.Textbox(label="Destination", placeholder="e.g., Paris")
|
165 |
+
days_input = gr.Number(label="Number of Days", value=3)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
submit_btn = gr.Button("Get Trip Plans", variant="primary")
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=2):
|
172 |
+
gr.Markdown("### Recommended Trip Plans from Dataset")
|
173 |
+
output_rec1 = gr.Markdown()
|
174 |
+
output_rec2 = gr.Markdown()
|
175 |
+
output_rec3 = gr.Markdown()
|
176 |
+
with gr.Column(scale=1):
|
177 |
+
gr.Markdown("### ✨ New AI-Generated Idea")
|
178 |
+
output_gen = gr.Textbox(label="AI Generated Trip Plan", lines=20, interactive=False)
|
179 |
+
|
180 |
+
submit_btn.click(
|
181 |
+
fn=trip_planner_wizard,
|
182 |
+
inputs=[destination_input, days_input],
|
183 |
+
outputs=[output_rec1, output_rec2, output_rec3, output_gen]
|
184 |
+
)
|
185 |
+
|
186 |
+
gr.Examples(
|
187 |
+
examples=[
|
188 |
+
["Paris", 3],
|
189 |
+
["Orlando", 7],
|
190 |
+
["Tokyo", 5],
|
191 |
+
["the Greek Islands", 10]
|
192 |
+
],
|
193 |
+
inputs=[destination_input, days_input]
|
194 |
+
)
|
195 |
+
|
196 |
+
demo.launch(ssr_mode=False)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.31.5
|
2 |
+
datasets==2.19.1
|
3 |
+
sentence-transformers==2.7.0
|
4 |
+
faiss-cpu==1.8.0
|
5 |
+
transformers==4.41.2
|
6 |
+
torch==2.3.1
|
7 |
+
pyarrow==16.1.0
|
8 |
+
huggingface-hub==0.23.3
|
trip_index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c8d2a2eb720f78a9be02358e0d87e287766a257179553b784831ba7b207c875
|
3 |
+
size 3072045
|