Spaces:
Build error
Build error
File size: 7,237 Bytes
5ed8d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Tuple
from PIL import Image
import os
import sys
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
os.system("git clone https://github.com/microsoft/unilm.git; cd unilm; git checkout 9102ed91f8e56baa31d7ae7e09e0ec98e77d779c; cd ..")
sys.path.append("unilm")
from unilm.dit.object_detection.ditod import add_vit_config
from detectron2.config import CfgNode as CN
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
#Plot settings
sns.set_style("darkgrid")
palette = sns.color_palette("pastel")
sns.set_palette(palette)
plt.switch_backend("Agg")
# Load the DiT model config
cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file("unilm/dit/object_detection/publaynet_configs/cascade/cascade_dit_base.yaml")
# Get the model weights
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Define the model predictor
predictor = DefaultPredictor(cfg)
# Load the DePlot model
model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot").to(cfg.MODEL.DEVICE)
processor = AutoProcessor.from_pretrained("google/deplot")
def crop_figure(img: Image.Image , threshold: float = 0.5) -> Image.Image:
"""Prediction function for the figure cropping model using DiT backend.
Args:
img (Image.Image): Input document image.
threshold (float, optional): Detection threshold. Defaults to 0.5.
Returns:
(Image.Image): The cropped figure image.
"""
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
md.set(thing_classes=["text","title","list","table","figure"])
output = predictor(np.array(img))["instances"]
boxes, scores, classes = output.pred_boxes.tensor.cpu().numpy(), output.scores.cpu().numpy(), output.pred_classes.cpu().numpy()
boxes = boxes[classes == 4] # 4 is the class for figures
scores = scores[classes == 4]
if len(boxes) == 0:
return []
print(boxes, scores)
# sort boxes by score
crop_box = boxes[np.argsort(scores)[::-1]][0]
# Add white space around the figure
margin = 0.1
box_size = crop_box[-2:] - crop_box[:2]
size = tuple((box_size + np.array([margin, margin]) * box_size).astype(int))
new = Image.new('RGB', size, (255, 255, 255))
image = img.crop(crop_box)
new.paste(image, (int((size[0] - image.size[0]) / 2), int(((size[1]) - image.size[1]) / 2)))
return new
def extract_tables(image: Image.Image) -> Tuple[str]:
"""Prediction function for the table extraction model using DePlot backend.
Args:
image (Image.Image): Input figure image.
Returns:
Tuple[str]: The table title, the table as a pandas dataframe, and the table as an HTML string, if the table was successfully extracted.
"""
inputs = processor(image, text="Generate a data table using only the data you see in the graph below: ", return_tensors="pt").to(cfg.MODEL.DEVICE)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=512)
decoded = processor.decode(outputs[0], skip_special_tokens=True)
print(decoded.replace("<0x0A>", "\n") )
data = [row.split(" | ") for row in decoded.split("<0x0A>")]
try:
if data[0][0].lower().startswith("title"):
title = data[0][1]
table = pd.DataFrame(data[2:], columns=data[1])
else:
title = "Table"
table = pd.DataFrame(data[1:], columns=data[0])
return title, table, table.to_html()
except:
return "Table", list(list()), decoded.replace("<0x0A>", "\n")
def update(df: pd.DataFrame, plot_type: str) -> plt.figure:
"""Update callback for the gradio interface, that updates the plot based on the table data and selected plot type.
Args:
df (pd.DataFrame): The extracted table data.
plot_type (str): The selected plot type to generate.
Returns:
plt.figure: The updated plot.
"""
plt.close("all")
df = df.apply(pd.to_numeric, errors="ignore")
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
cols = df.columns
if len(cols) == 0:
return fig
if len(cols) > 1:
df.set_index(cols[0], inplace=True)
try:
if plot_type == "Line":
sns.lineplot(data=df, ax=ax)
elif plot_type == "Bar":
df = df.reset_index()
if len(cols) == 1:
sns.barplot(x=df.index, y=df[df.columns[0]], ax=ax)
elif len(cols) == 2:
sns.barplot(x=df[df.columns[0]], y=df[df.columns[1]], ax=ax)
else:
df = df.melt(id_vars=cols[0], value_vars=cols[1:], value_name="Value")
sns.barplot(x=df[cols[0]], y=df["Value"], hue=df["variable"], ax=ax)
elif plot_type == "Scatter":
sns.scatterplot(data=df, ax=ax)
elif plot_type == "Pie":
ax.pie(df[df.columns[0]], labels=df.index, autopct='%1.1f%%', colors=palette)
ax.axis('equal')
except:
pass
plt.tight_layout()
return fig
with gr.Blocks() as demo:
gr.Markdown("<h1 align=center>Data extraction from charts</h1>")
gr.Markdown("This Space illustrates an experimental extraction pipeline using two pretrained models:"
" DiT is used to to find figures in a document and crop them."
" DePlot is used to extract the data from the plot and covert it to tabular format."
" Alternatively, you can paste a figure directly into the right Image field for data extraction."
" Finally, you can re-plot the extracted table using the Plot Type selector. And copy the HTML code to paste it elsewhere.")
with gr.Row() as row1:
input = gr.Image(image_mode="RGB", label="Document Page", type='pil')
cropped = gr.Image(image_mode="RGB", label="Cropped Image", type='pil')
with gr.Row() as row12:
crop_btn = gr.Button("Crop Figure")
extract_btn = gr.Button("Extract")
with gr.Row() as row13:
gr.Examples(["./2304.08069_2.png"], input)
gr.Examples(["./chartVQA.png"], cropped)
title = gr.Textbox(label="Title")
with gr.Row() as row2:
with gr.Column() as col1:
tab_data = gr.DataFrame(label="Table")
plot_type = gr.Radio(["Line", "Bar", "Scatter", "Pie"], label="Plot Type", default="Line")
plot_btn = gr.Button("Plot")
display = gr.Plot()
with gr.Row() as row3:
html_data = gr.Textbox(label="HTML copy-paste").style(show_copy_button=True, copy_button_label="Copy to clipboard")
crop_btn.click(crop_figure, input, [cropped])
extract_btn.click(extract_tables, cropped, [title, tab_data, html_data])
plot_btn.click(update, [tab_data, plot_type], display)
if __name__ == "__main__":
demo.launch() |