File size: 14,072 Bytes
c379cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f16bd
c379cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import json
import mimetypes
import requests
import time
from yt_dlp import YoutubeDL
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.units import inch
import gradio as gr

from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import ChatOpenAI
from openai import OpenAI, DefaultHttpxClient
from langchain_chroma import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.runnables import RunnableLambda
from langchain_core.runnables.passthrough import RunnableAssign
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.output_parsers import PydanticOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from typing import List
from pprint import pprint


def download_youtube_video(youtube_url, download_path):
    try:
        ydl_opts = {
            'cookiefile': "cookies.txt",
            'format': 'bestaudio/best',
            'outtmpl': os.path.join(download_path, '%(title)s.%(ext)s'),
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'mp3',
                'preferredquality': '192',
            }],
        }
        with YoutubeDL(ydl_opts) as ydl:
            info_dict = ydl.extract_info(youtube_url, download=True)
            title = info_dict.get('title', None)
            filename = ydl.prepare_filename(info_dict).replace('.webm', '.mp3').replace('.m4a', '.mp3')
            return filename, title
    except Exception as e:
        print(f"Failed to download video from {youtube_url}: {e}")
        return None, None

def upload_file(filepath, api_key):
    url = "https://api.monsterapi.ai/v1/upload"
    headers = {
        "accept": "application/json",
        "authorization": f"Bearer {api_key}"
    }

    file_name = os.path.basename(filepath)
    get_file_urls = requests.get(f"{url}?filename={file_name}", headers=headers)

    if get_file_urls.status_code != 200:
        print(f"Failed to get upload URL: {get_file_urls.status_code}")
        return None

    response_json = get_file_urls.json()
    upload_url = response_json['upload_url']
    download_url = response_json['download_url']

    data = open(filepath, 'rb').read()
    file_headers = {
        "Content-Type": mimetypes.guess_type(filepath)[0],
    }

    file_uploaded = requests.put(upload_url, data=data, headers=file_headers)

    if file_uploaded.status_code == 200:
        print(f"File successfully uploaded. Usable link is {download_url}")
        return download_url
    else:
        print(f"Failed to upload file: {file_uploaded.status_code}")
        return None

def generate_process_id(download_url, api_key):
    whisper_url = "https://api.monsterapi.ai/v1/generate/whisper"
    payload = { 
        "file": f"{download_url}",
        "language": "en"
    }
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": f"Bearer {api_key}"
    }

    response = requests.post(whisper_url, json=payload, headers=headers)

    if response.status_code != 200:
        print(f"Failed to generate process ID: {response.status_code}")
        return None
    else:
        process_id = response.json().get("process_id")
        print(f"Process ID is: {process_id}")
        return process_id

def query_job_status(job_id, api_key):
    transcript = ""
    url = f"https://api.monsterapi.ai/v1/status/{job_id}"
    headers = {
        "accept": "application/json",
        "authorization": f"Bearer {api_key}"
    }

    while True:
        response = requests.get(url, headers=headers)
        
        if response.status_code != 200:
            print(f"Failed to get status: {response.status_code}")
            return transcript

        status = response.json().get("status")
        
        if status in ["COMPLETED", "FAILED"]:
            print(f"Job status: {status}")
            if status == "COMPLETED":
                transcript = response.json().get("result")["text"]
            return transcript
        
        print(f"Job status: {status}, checking again in 5 seconds...")
        time.sleep(5)

def create_pdf(transcripts, file_path):
    doc = SimpleDocTemplate(file_path, pagesize=letter)
    styles = getSampleStyleSheet()
    story = []

    for i, (title, transcript) in enumerate(transcripts, start=1):
        story.append(Paragraph(f'YouTube Video {i} Title: {title}', styles['Title']))
        story.append(Spacer(1, 12))
        story.append(Paragraph(f'YouTube Video {i} Transcript:', styles['Heading2']))
        story.append(Spacer(1, 12))
        story.append(Paragraph(transcript.replace('\n', '<br/>'), styles['BodyText']))
        story.append(Spacer(1, 24))

    doc.build(story)


import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import ChatOpenAI
from openai import OpenAI, DefaultHttpxClient
from langchain_chroma import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.runnables import RunnableLambda
from langchain_core.runnables.passthrough import RunnableAssign
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.output_parsers import PydanticOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from typing import List
from pprint import pprint

os.environ["OPENAI_API_KEY"] = "sk-proj-3XiMKGvrD8ev35tnGZ76T3BlbkFJmUSzs9Xpq8RBVF7tMyMh"

class DocumentSummaryBase(BaseModel):
    running_summary: str = Field("", description="Running description of the document. Do not override; only update!")
    main_ideas: List[str] = Field([], description="Most important information from the document (max 3)")
    loose_ends: List[str] = Field([], description="Open questions that would be good to incorporate into summary, but that are yet unknown (max 3)")

def transcribe_and_save(youtube_urls):
    download_path = os.getcwd()
    api_key = "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA"
    pdf_output_path = os.getcwd()+"/transcripts.pdf"
    transcripts = []
    for youtube_url in youtube_urls:
        filepath, title = download_youtube_video(youtube_url, download_path)

        if filepath and title:
            download_url = upload_file(filepath, api_key)
            if download_url:
                process_id = generate_process_id(download_url, api_key)
                if process_id:
                    transcript = query_job_status(process_id, api_key)
                    transcripts.append((title, transcript))
    # Save all transcripts into a PDF file
    create_pdf(transcripts, "transcripts.pdf")

def RExtract(pydantic_class, llm, prompt):
    '''
    Runnable Extraction module
    Returns a knowledge dictionary populated by slot-filling extraction
    '''
    parser = PydanticOutputParser(pydantic_object=pydantic_class)
    instruct_merge = RunnableAssign({'format_instructions' : lambda x: parser.get_format_instructions()})
    def preparse(string):
        if '{' not in string: string = '{' + string
        if '}' not in string: string = string + '}'
        string = (string
            .replace("\\_", "_")
            .replace("\n", " ")
            .replace("\]", "]")
            .replace("\[", "[")
        )
        # print(string)  ## Good for diagnostics
        return string
    return instruct_merge | prompt | llm | preparse | parser

def RSummarizer(knowledge, llm, prompt, verbose=False):
    '''
    Exercise: Create a chain that summarizes
    '''
    def summarize_docs(docs):
        parse_chain = RunnableAssign({"info_base": RExtract(knowledge.__class__, llm, prompt)})
        state = {"info_base": knowledge}
        all_summaries = []  # List to store all intermediate summaries

        for i, doc in enumerate(docs):
            state['input'] = doc.page_content
            state = parse_chain.invoke(state)

            # Store the current info_base in the list
            all_summaries.append(state['info_base'].dict())

            if verbose:
                print(f"Considered {i+1} documents")
                pprint(state['info_base'].dict())
        return all_summaries
    return RunnableLambda(summarize_docs)

def find_first_non_empty_summary(summaries):
    for summary in reversed(summaries):
        if summary['loose_ends'] or summary['main_ideas'] or summary['running_summary']:
            return summary
    return None

def create_running_summary(url):
    loader = WebBaseLoader(url)
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200,chunk_overlap=100,separators=["\n\n", "\n", ".", ";", ",", " ", ""])
    documents = loader.load()
    docs_split = text_splitter.split_documents(documents)
    summary_prompt =ChatPromptTemplate.from_template("""You are generating a running summary of the document. Make it readable by a technical user.
        After this, the old knowledge base will be replaced by the new one. Make sure a reader can still understand everything.
        Keep it short, but as dense and useful as possible! The information should flow from chunk to (loose ends or main ideas) to running_summary.
        Strictly output a json and nothing else do not output any strings or explanations just the json is enough.
        The updated knowledge base keep all of the information from running_summary here: {info_base}.
        {format_instructions}. Follow the format precisely, including quotations and commas\n\n
        {info_base}\nWithout losing any of the info, update the knowledge base with the following: {input}""")
    instruct_model = llm_1 | StrOutputParser()
    summarizer = RSummarizer(DocumentSummaryBase(), instruct_model, summary_prompt, verbose=True)
    summaries = summarizer.invoke(docs_split)
    summary = find_first_non_empty_summary(summaries)
    return summary


def setup_vectorstore():
    embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
    vector_store = Chroma(collection_name="collection-1",embedding_function=embeddings,persist_directory="./vectorstore",)
    loader = PyPDFLoader(os.getcwd()+"/transcripts.pdf")
    documents = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=250,chunk_overlap=0,separators=["\n\n"])
    text = text_splitter.split_documents(documents)
    retriever = vector_store.as_retriever()
    retriever.add_documents(text)
    return retriever

def generate(content,examples):
    chat_template = ChatPromptTemplate.from_template("""Your are provided with a few sample youtube video scripts below.
                                                    your task is to create a similar script for the following content provided to you below.
                                                    Follow the style followd in the examples and create a similar script for the content givent to you.
                                                    Create me a script for a youtube video explaining the following content: {content}.
                                                    Here are a few example scripts of my previous videos that you have to adapt: {examples}.""")
    gen_chain = chat_template | llm_2 | StrOutputParser()
    return gen_chain.invoke({"content": content, "examples": examples})

def docs2str(docs, title="Document"):
  out_str = ""
  for doc in docs:
    doc_name = getattr(doc, 'metadata', {}).get('Title', title)
    if doc_name:
      out_str += f"[Quote from {doc_name}] "
      out_str += getattr(doc, 'page_content', str(doc)) + "\n"
  return out_str

llm_1 = ChatOpenAI(
    model="google/gemma-2-9b-it",
    temperature=0,
    max_tokens=None,
    timeout=None,
    max_retries=2,
    api_key="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA",
    base_url="https://llm.monsterapi.ai/v1/",
    http_client=DefaultHttpxClient(verify = False)
)

llm_2 = ChatOpenAI(
    model="meta-llama/Meta-Llama-3.1-8B-Instruct",
    temperature=0,
    max_tokens=None,
    timeout=None,
    max_retries=2,
    api_key="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA",
    base_url="https://llm.monsterapi.ai/v1/",
    http_client=DefaultHttpxClient(verify = False)
)

def process_links(style_links, context_link):
    # Here you can define the processing logic for the links.
    style_links = style_links.split(",")
    style_links = [link.strip() for link in style_links]
    transcribe_and_save(style_links)
    retriever = setup_vectorstore()
    summary = create_running_summary(context_link)
    summary = summary['running_summary']
    print("Summarized the url successfully:", summary)
    examples = retriever.invoke(summary)
    return generate(summary,examples)

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Link Processor")

    style_links = gr.Textbox(lines=5, placeholder="Enter style links separated by commas", label="Style Links")
    context_link = gr.Textbox(lines=1, placeholder="Enter context link", label="Context Link")

    output = gr.Textbox(lines=2, label="Output")

    process_button = gr.Button("Process")

    process_button.click(process_links, inputs=[style_links, context_link], outputs=output)

demo.launch()