Claude AI
commited on
Commit
·
1ec5d3f
1
Parent(s):
f049b37
Add application files with improved energy tracking
Browse files- Add Gradio app with model routing based on ModernBERT classification
- Show energy and cost savings when using small model
- Display actual consumption when using large model
- Support for OpenRouter API integration
- Fix token estimation for short prompts
- app.py +500 -0
- bertmodel.py +68 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
from typing import Dict, Tuple, List
|
5 |
+
from bertmodel import predict_label
|
6 |
+
# from ecologits import EcoLogits # Removed - using OpenRouter instead
|
7 |
+
# from openai import OpenAI # Removed - using OpenRouter instead
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import os
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
+
|
13 |
+
# Set environment variable to suppress tokenizers warning
|
14 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
18 |
+
# Model configurations with energy consumption and cost estimates
|
19 |
+
MODEL_CONFIGS = {
|
20 |
+
"large": {
|
21 |
+
"name": "Claude Opus 4",
|
22 |
+
"energy_per_token": 1.356, # Wh per token (67.8 Wh / 50 tokens)
|
23 |
+
"cost_per_input_token": 0.000015, # $15/M tokens
|
24 |
+
"cost_per_output_token": 0.000075, # $75/M tokens
|
25 |
+
"icon": "🧠"
|
26 |
+
},
|
27 |
+
"small": {
|
28 |
+
"name": "Mistral Small 24B",
|
29 |
+
"energy_per_token": 0.00596, # Wh per token (0.298 Wh / 50 tokens)
|
30 |
+
"cost_per_input_token": 0.00000005, # $0.05/M tokens
|
31 |
+
"cost_per_output_token": 0.00000012, # $0.12/M tokens
|
32 |
+
"icon": "⚡"
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
class ModelRouter:
|
37 |
+
def __init__(self):
|
38 |
+
self.routing_history = []
|
39 |
+
print("[INIT] ModelRouter initialized")
|
40 |
+
|
41 |
+
def classify_prompt(self, prompt: str) -> str:
|
42 |
+
print(f"\n[CLASSIFY] Classifying prompt: '{prompt[:50]}...'")
|
43 |
+
label = predict_label(prompt)
|
44 |
+
print(f"[CLASSIFY] ModernBERT returned label: '{label}'")
|
45 |
+
return label
|
46 |
+
|
47 |
+
def select_model(self, prompt: str) -> str:
|
48 |
+
"""Select the most efficient model based on prompt classification."""
|
49 |
+
prompt_type = self.classify_prompt(prompt)
|
50 |
+
# Normalize
|
51 |
+
key = prompt_type.strip().lower()
|
52 |
+
print(f"[SELECT] Normalized label: '{key}'")
|
53 |
+
|
54 |
+
# Map normalized labels to actual MODEL_CONFIGS keys
|
55 |
+
if "small" in key:
|
56 |
+
print(f"[SELECT] Selected: SMALL model (Mistral Small 24B)")
|
57 |
+
return "small"
|
58 |
+
else:
|
59 |
+
print(f"[SELECT] Selected: LARGE model (Claude Opus 4)")
|
60 |
+
return "large"
|
61 |
+
|
62 |
+
|
63 |
+
def estimate_tokens(self,
|
64 |
+
prompt: str,
|
65 |
+
response: str | None = None,
|
66 |
+
max_response_tokens: int | None = None) -> int:
|
67 |
+
"""
|
68 |
+
Estimate total token count: exact prompt tokens +
|
69 |
+
a target number of response tokens.
|
70 |
+
"""
|
71 |
+
# Simple estimation: 4 characters = 1 token
|
72 |
+
prompt_tokens = len(prompt) // 4
|
73 |
+
print(f"[TOKENS] Prompt tokens: {prompt_tokens} (from {len(prompt)} chars)")
|
74 |
+
|
75 |
+
if response is not None:
|
76 |
+
response_tokens = len(response) // 4
|
77 |
+
elif max_response_tokens is not None:
|
78 |
+
# you’re reserving this many tokens for the model’s reply
|
79 |
+
response_tokens = max_response_tokens
|
80 |
+
else:
|
81 |
+
# Estimate response will be similar length to prompt
|
82 |
+
response_tokens = prompt_tokens
|
83 |
+
|
84 |
+
total_tokens = prompt_tokens + response_tokens
|
85 |
+
print(f"[TOKENS] Response tokens: {response_tokens}, Total: {total_tokens}")
|
86 |
+
return total_tokens
|
87 |
+
|
88 |
+
def estimate_large_model_energy(self, tokens: int) -> float:
|
89 |
+
"""
|
90 |
+
Estimate large model energy consumption based on tokens.
|
91 |
+
Using empirical estimates for energy consumption.
|
92 |
+
"""
|
93 |
+
large_config = MODEL_CONFIGS["large"]
|
94 |
+
return tokens * large_config["energy_per_token"]
|
95 |
+
|
96 |
+
def calculate_savings(self, selected_model: str, prompt: str) -> Dict:
|
97 |
+
"""Calculate energy and cost savings compared to using the large model"""
|
98 |
+
print(f"[SAVINGS] Calculating for model: {selected_model}")
|
99 |
+
|
100 |
+
# Calculate input and output tokens separately
|
101 |
+
input_tokens = max(1, len(prompt) // 4) # Minimum 1 token
|
102 |
+
output_tokens = max(1, input_tokens) # Estimate same length response, minimum 1
|
103 |
+
total_tokens = input_tokens + output_tokens
|
104 |
+
|
105 |
+
print(f"[SAVINGS] Input tokens: {input_tokens}, Output tokens: {output_tokens}")
|
106 |
+
|
107 |
+
selected_config = MODEL_CONFIGS[selected_model]
|
108 |
+
large_config = MODEL_CONFIGS["large"]
|
109 |
+
|
110 |
+
# Calculate actual usage
|
111 |
+
actual_energy = total_tokens * selected_config["energy_per_token"]
|
112 |
+
actual_cost = (input_tokens * selected_config["cost_per_input_token"] +
|
113 |
+
output_tokens * selected_config["cost_per_output_token"])
|
114 |
+
|
115 |
+
# Calculate large model usage
|
116 |
+
large_energy = self.estimate_large_model_energy(total_tokens)
|
117 |
+
large_cost = (input_tokens * large_config["cost_per_input_token"] +
|
118 |
+
output_tokens * large_config["cost_per_output_token"])
|
119 |
+
|
120 |
+
# Calculate savings (only positive if small model is selected)
|
121 |
+
if selected_model == "small":
|
122 |
+
energy_saved = large_energy - actual_energy
|
123 |
+
cost_saved = large_cost - actual_cost
|
124 |
+
energy_saved_percent = (energy_saved / large_energy) * 100 if large_energy > 0 else 0
|
125 |
+
cost_saved_percent = (cost_saved / large_cost) * 100 if large_cost > 0 else 0
|
126 |
+
else:
|
127 |
+
# No savings if using the large model
|
128 |
+
energy_saved = 0
|
129 |
+
cost_saved = 0
|
130 |
+
energy_saved_percent = 0
|
131 |
+
cost_saved_percent = 0
|
132 |
+
|
133 |
+
print(f"[SAVINGS] Selected: {selected_model}")
|
134 |
+
print(f"[SAVINGS] Actual energy: {actual_energy:.4f} Wh, Large energy: {large_energy:.4f} Wh")
|
135 |
+
print(f"[SAVINGS] Actual cost: ${actual_cost:.8f}, Large cost: ${large_cost:.8f}")
|
136 |
+
print(f"[SAVINGS] Energy saved: {energy_saved:.4f} Wh ({energy_saved_percent:.1f}%)")
|
137 |
+
print(f"[SAVINGS] Cost saved: ${cost_saved:.8f} ({cost_saved_percent:.1f}%)")
|
138 |
+
|
139 |
+
return {
|
140 |
+
"selected_model": selected_config["name"],
|
141 |
+
"tokens": total_tokens,
|
142 |
+
"actual_energy": actual_energy,
|
143 |
+
"actual_cost": actual_cost,
|
144 |
+
"large_energy": large_energy,
|
145 |
+
"large_cost": large_cost,
|
146 |
+
"energy_saved": energy_saved,
|
147 |
+
"cost_saved": cost_saved,
|
148 |
+
"energy_saved_percent": energy_saved_percent,
|
149 |
+
"cost_saved_percent": cost_saved_percent,
|
150 |
+
"is_large_model": selected_model == "large" # Add flag for template
|
151 |
+
}
|
152 |
+
|
153 |
+
print("[STARTUP] Initializing ModelRouter...")
|
154 |
+
router = ModelRouter()
|
155 |
+
print("[STARTUP] ModelRouter ready")
|
156 |
+
print(f"[STARTUP] Available models: {list(MODEL_CONFIGS.keys())}")
|
157 |
+
print(f"[STARTUP] OpenRouter API Key: {'SET' if OPENROUTER_API_KEY else 'NOT SET'}")
|
158 |
+
|
159 |
+
def process_message(message: str, history: List[List[str]]) -> Tuple[str, str, str]:
|
160 |
+
"""Process the user message and return response with savings info"""
|
161 |
+
print(f"\n{'='*60}")
|
162 |
+
print(f"[PROCESS] New message received: '{message[:100]}...'")
|
163 |
+
|
164 |
+
# Route to appropriate model
|
165 |
+
selected_model = router.select_model(message)
|
166 |
+
model_config = MODEL_CONFIGS[selected_model]
|
167 |
+
print(f"[PROCESS] Using model config: {model_config['name']}")
|
168 |
+
|
169 |
+
# Calculate savings
|
170 |
+
print(f"[PROCESS] Calculating savings...")
|
171 |
+
savings = router.calculate_savings(selected_model, message)
|
172 |
+
print(f"[PROCESS] Savings calculated: {savings['energy_saved_percent']:.1f}% energy, {savings['cost_saved_percent']:.1f}% cost")
|
173 |
+
|
174 |
+
open_router_model_dict = {
|
175 |
+
"large": "anthropic/claude-opus-4",
|
176 |
+
"small": "mistralai/mistral-small-24b-instruct-2501"
|
177 |
+
}
|
178 |
+
# Check if API key is available
|
179 |
+
if not OPENROUTER_API_KEY:
|
180 |
+
print(f"[API] No OpenRouter API key found - running in DEMO MODE")
|
181 |
+
answer = f"[Demo Mode] This would be a response from {model_config['name']} to: {message[:50]}..."
|
182 |
+
else:
|
183 |
+
print(f"[API] OpenRouter API key found: {OPENROUTER_API_KEY[:10]}...")
|
184 |
+
try:
|
185 |
+
model_id = open_router_model_dict[selected_model]
|
186 |
+
print(f"[API] Calling OpenRouter with model: {model_id}")
|
187 |
+
|
188 |
+
request_data = {
|
189 |
+
"model": model_id,
|
190 |
+
"messages": [
|
191 |
+
{
|
192 |
+
"role": "user",
|
193 |
+
"content": message
|
194 |
+
}
|
195 |
+
]
|
196 |
+
}
|
197 |
+
print(f"[API] Request data: {json.dumps(request_data, indent=2)[:200]}...")
|
198 |
+
|
199 |
+
response = requests.post(
|
200 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
201 |
+
headers={
|
202 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
203 |
+
"Content-Type": "application/json"
|
204 |
+
},
|
205 |
+
data=json.dumps(request_data)
|
206 |
+
)
|
207 |
+
|
208 |
+
# Debug: print response status and content
|
209 |
+
print(f"[API] Response Status Code: {response.status_code}")
|
210 |
+
print(f"[API] Response Headers: {dict(response.headers)}")
|
211 |
+
|
212 |
+
if response.status_code != 200:
|
213 |
+
print(f"[API ERROR] Full response: {response.text}")
|
214 |
+
answer = f"[API Error {response.status_code}] {response.text[:200]}..."
|
215 |
+
else:
|
216 |
+
data = response.json()
|
217 |
+
print(f"[API] Response keys: {list(data.keys())}")
|
218 |
+
|
219 |
+
if "choices" in data and len(data["choices"]) > 0:
|
220 |
+
answer = data["choices"][0]["message"]["content"]
|
221 |
+
print(f"[API] Successfully got response: {answer[:100]}...")
|
222 |
+
else:
|
223 |
+
print(f"[API ERROR] Unexpected response format: {json.dumps(data, indent=2)}")
|
224 |
+
answer = f"[Error] Unexpected response format from OpenRouter API"
|
225 |
+
except Exception as e:
|
226 |
+
print(f"[API EXCEPTION] Error type: {type(e).__name__}")
|
227 |
+
print(f"[API EXCEPTION] Error message: {str(e)}")
|
228 |
+
import traceback
|
229 |
+
print(f"[API EXCEPTION] Traceback:\n{traceback.format_exc()}")
|
230 |
+
answer = f"[Error] Failed to get response from {model_config['name']}. Error: {str(e)}"
|
231 |
+
# Format the response with model info
|
232 |
+
response = f"{answer}\n\n<div style='background: #f0f9ff; border-left: 3px solid #0ea5e9; padding: 8px 12px; margin-top: 10px; border-radius: 4px;'><small style='color: #0369a1; font-weight: 500;'>{model_config['icon']} Answered by {model_config['name']}</small></div>"
|
233 |
+
|
234 |
+
# Format model info
|
235 |
+
model_info = f"""
|
236 |
+
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 20px; border-radius: 12px; margin-bottom: 20px;">
|
237 |
+
<div style="display: flex; align-items: center; margin-bottom: 10px;">
|
238 |
+
<span style="font-size: 2em; margin-right: 10px;">{model_config['icon']}</span>
|
239 |
+
<h3 style="margin: 0; color: #2c3e50;">{model_config['name']}</h3>
|
240 |
+
</div>
|
241 |
+
<p style="color: #5a6c7d; margin: 5px 0;">Optimal model selected for your query</p>
|
242 |
+
</div>
|
243 |
+
"""
|
244 |
+
|
245 |
+
# Format savings information with conditional display based on model
|
246 |
+
if savings['is_large_model']:
|
247 |
+
# Show actual consumption for large model with warning colors
|
248 |
+
savings_info = f"""
|
249 |
+
<div style="background: #ffffff; border: 1px solid #fed7aa; border-radius: 12px; padding: 20px;">
|
250 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
|
251 |
+
<div>
|
252 |
+
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">Energy Consumption</p>
|
253 |
+
<p style="color: #ea580c; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
254 |
+
{savings['actual_energy']:.1f} Wh
|
255 |
+
</p>
|
256 |
+
<p style="color: #7c2d12; font-size: 0.85em; margin: 0;">
|
257 |
+
High energy usage
|
258 |
+
</p>
|
259 |
+
</div>
|
260 |
+
<div>
|
261 |
+
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">Cost Impact</p>
|
262 |
+
<p style="color: #dc2626; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
263 |
+
${savings['actual_cost']:.6f}
|
264 |
+
</p>
|
265 |
+
<p style="color: #991b1b; font-size: 0.85em; margin: 0;">
|
266 |
+
Premium pricing
|
267 |
+
</p>
|
268 |
+
</div>
|
269 |
+
</div>
|
270 |
+
</div>
|
271 |
+
"""
|
272 |
+
else:
|
273 |
+
# Show savings for small model with positive colors
|
274 |
+
savings_info = f"""
|
275 |
+
<div style="background: #ffffff; border: 1px solid #e1e8ed; border-radius: 12px; padding: 20px;">
|
276 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
|
277 |
+
<div>
|
278 |
+
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">Energy Efficiency</p>
|
279 |
+
<p style="color: #22c55e; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
280 |
+
{savings['energy_saved_percent']:.1f}% saved
|
281 |
+
</p>
|
282 |
+
<p style="color: #5a6c7d; font-size: 0.85em; margin: 0;">
|
283 |
+
{savings['energy_saved']:.1f} Wh reduction
|
284 |
+
</p>
|
285 |
+
<p style="color: #8795a1; font-size: 0.75em; margin: 3px 0 0 0; font-style: italic;">
|
286 |
+
vs. using large model
|
287 |
+
</p>
|
288 |
+
</div>
|
289 |
+
<div>
|
290 |
+
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">Cost Optimization</p>
|
291 |
+
<p style="color: #3b82f6; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
292 |
+
{savings['cost_saved_percent']:.1f}% saved
|
293 |
+
</p>
|
294 |
+
<p style="color: #5a6c7d; font-size: 0.85em; margin: 0;">
|
295 |
+
${savings['cost_saved']:.8f} reduction
|
296 |
+
</p>
|
297 |
+
<p style="color: #8795a1; font-size: 0.75em; margin: 3px 0 0 0; font-style: italic;">
|
298 |
+
vs. using large model
|
299 |
+
</p>
|
300 |
+
</div>
|
301 |
+
</div>
|
302 |
+
</div>
|
303 |
+
"""
|
304 |
+
|
305 |
+
# Add to routing history
|
306 |
+
router.routing_history.append({
|
307 |
+
"timestamp": time.time(),
|
308 |
+
"prompt": message,
|
309 |
+
"model": selected_model,
|
310 |
+
"savings": savings
|
311 |
+
})
|
312 |
+
|
313 |
+
print(f"[PROCESS] Response formatted, returning to UI")
|
314 |
+
print(f"{'='*60}\n")
|
315 |
+
|
316 |
+
return response, model_info, savings_info
|
317 |
+
|
318 |
+
def get_statistics() -> str:
|
319 |
+
"""Get cumulative statistics from routing history"""
|
320 |
+
if not router.routing_history:
|
321 |
+
return """
|
322 |
+
<div style="background: #f8fafc; border-radius: 12px; padding: 30px; text-align: center; color: #64748b;">
|
323 |
+
<p style="margin: 0;">No queries processed yet</p>
|
324 |
+
<p style="margin: 10px 0 0 0; font-size: 0.9em;">Start a conversation to see your impact metrics</p>
|
325 |
+
</div>
|
326 |
+
"""
|
327 |
+
|
328 |
+
total_queries = len(router.routing_history)
|
329 |
+
|
330 |
+
# Calculate user's total savings
|
331 |
+
user_total_energy_saved = sum(entry["savings"]["energy_saved"] for entry in router.routing_history)
|
332 |
+
user_total_cost_saved = sum(entry["savings"]["cost_saved"] for entry in router.routing_history)
|
333 |
+
|
334 |
+
# Count how many times each model was used
|
335 |
+
small_model_count = sum(1 for entry in router.routing_history if entry["model"] == "small")
|
336 |
+
large_model_count = sum(1 for entry in router.routing_history if entry["model"] == "large")
|
337 |
+
|
338 |
+
stats = f"""
|
339 |
+
<div style="background: #ffffff; border: 1px solid #e2e8f0; border-radius: 12px; padding: 25px;">
|
340 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
341 |
+
<h4 style="color: #1e293b; font-size: 1.1em; margin: 0; font-weight: 600;">Your Total Impact</h4>
|
342 |
+
</div>
|
343 |
+
|
344 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; margin-bottom: 15px;">
|
345 |
+
<div style="background: #f0fdf4; border-radius: 8px; padding: 15px; text-align: center;">
|
346 |
+
<p style="color: #166534; font-size: 0.9em; margin: 0;">Energy Saved</p>
|
347 |
+
<p style="color: #15803d; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
348 |
+
{user_total_energy_saved:.1f}
|
349 |
+
</p>
|
350 |
+
<p style="color: #166534; font-size: 0.8em; margin: 0;">Wh</p>
|
351 |
+
</div>
|
352 |
+
|
353 |
+
<div style="background: #eff6ff; border-radius: 8px; padding: 15px; text-align: center;">
|
354 |
+
<p style="color: #1e40af; font-size: 0.9em; margin: 0;">Money Saved</p>
|
355 |
+
<p style="color: #2563eb; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
|
356 |
+
${user_total_cost_saved:.6f}
|
357 |
+
</p>
|
358 |
+
<p style="color: #1e40af; font-size: 0.8em; margin: 0;">USD</p>
|
359 |
+
</div>
|
360 |
+
</div>
|
361 |
+
|
362 |
+
<div style="background: #fefce8; border-radius: 8px; padding: 12px; text-align: center;">
|
363 |
+
<p style="color: #713f12; font-size: 0.9em; margin: 0;">
|
364 |
+
<span style="font-weight: 600;">Model Usage:</span> Small model {small_model_count}x, Large model {large_model_count}x
|
365 |
+
</p>
|
366 |
+
</div>
|
367 |
+
</div>
|
368 |
+
"""
|
369 |
+
|
370 |
+
return stats
|
371 |
+
|
372 |
+
# Custom CSS for a more professional look
|
373 |
+
custom_css = """
|
374 |
+
.gradio-container {
|
375 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Helvetica', 'Arial', sans-serif;
|
376 |
+
}
|
377 |
+
.message {
|
378 |
+
padding: 12px 16px !important;
|
379 |
+
border-radius: 8px !important;
|
380 |
+
}
|
381 |
+
"""
|
382 |
+
|
383 |
+
# Create Gradio interface
|
384 |
+
with gr.Blocks(
|
385 |
+
title="Do I really need a huge LLM?",
|
386 |
+
theme=gr.themes.Base(
|
387 |
+
primary_hue="blue",
|
388 |
+
secondary_hue="gray",
|
389 |
+
neutral_hue="gray",
|
390 |
+
font=["Inter", "system-ui", "sans-serif"]
|
391 |
+
),
|
392 |
+
css=custom_css
|
393 |
+
) as demo:
|
394 |
+
with gr.Row():
|
395 |
+
with gr.Column(scale=3):
|
396 |
+
gr.Markdown("""
|
397 |
+
<div style="margin-bottom: 30px;">
|
398 |
+
<h1 style="margin: 0; font-size: 2em; font-weight: 600; color: #0f172a;">
|
399 |
+
Do I really need a huge LLM?
|
400 |
+
</h1>
|
401 |
+
<p style="margin: 10px 0 0 0; color: #64748b; font-size: 1.1em;">
|
402 |
+
Let's find out! This tool automatically routes your queries to the right-sized model.
|
403 |
+
</p>
|
404 |
+
</div>
|
405 |
+
""")
|
406 |
+
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column(scale=3):
|
409 |
+
chatbot = gr.Chatbot(
|
410 |
+
height=500,
|
411 |
+
show_label=False,
|
412 |
+
container=True,
|
413 |
+
elem_classes=["chat-container"]
|
414 |
+
)
|
415 |
+
|
416 |
+
with gr.Row():
|
417 |
+
msg = gr.Textbox(
|
418 |
+
placeholder="Type your message here...",
|
419 |
+
show_label=False,
|
420 |
+
scale=9,
|
421 |
+
container=False,
|
422 |
+
elem_classes=["message-input"]
|
423 |
+
)
|
424 |
+
submit = gr.Button(
|
425 |
+
"Send",
|
426 |
+
variant="primary",
|
427 |
+
scale=1,
|
428 |
+
min_width=100
|
429 |
+
)
|
430 |
+
|
431 |
+
with gr.Column(scale=2):
|
432 |
+
# Model selection display
|
433 |
+
model_display = gr.HTML(
|
434 |
+
value="""
|
435 |
+
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
|
436 |
+
<p style="margin: 0;">Model selection will appear here</p>
|
437 |
+
</div>
|
438 |
+
""",
|
439 |
+
label="Selected Model"
|
440 |
+
)
|
441 |
+
|
442 |
+
# Savings metrics
|
443 |
+
savings_display = gr.HTML(
|
444 |
+
value="""
|
445 |
+
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
|
446 |
+
<p style="margin: 0;">Efficiency metrics will appear here</p>
|
447 |
+
</div>
|
448 |
+
""",
|
449 |
+
label="Efficiency Metrics"
|
450 |
+
)
|
451 |
+
|
452 |
+
# Cumulative stats
|
453 |
+
stats_display = gr.HTML(
|
454 |
+
value=get_statistics(),
|
455 |
+
label="Your Impact Dashboard"
|
456 |
+
)
|
457 |
+
|
458 |
+
# Footer with minimal info
|
459 |
+
with gr.Row():
|
460 |
+
gr.Markdown("""
|
461 |
+
<div style="margin-top: 40px; padding-top: 20px; border-top: 1px solid #e2e8f0; text-align: center; color: #94a3b8; font-size: 0.85em;">
|
462 |
+
<p style="margin: 5px 0;">Comparing small vs large model efficiency • Real-time tracking • Environmental impact monitoring</p>
|
463 |
+
</div>
|
464 |
+
""")
|
465 |
+
|
466 |
+
def respond(message, chat_history):
|
467 |
+
response, model_info, savings = process_message(message, chat_history)
|
468 |
+
chat_history.append((message, response))
|
469 |
+
return "", chat_history, model_info, savings, get_statistics()
|
470 |
+
|
471 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot, model_display, savings_display, stats_display])
|
472 |
+
submit.click(respond, [msg, chatbot], [msg, chatbot, model_display, savings_display, stats_display])
|
473 |
+
|
474 |
+
# Clear button functionality
|
475 |
+
def clear_chat():
|
476 |
+
return None, """
|
477 |
+
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
|
478 |
+
<p style="margin: 0;">Model selection will appear here</p>
|
479 |
+
</div>
|
480 |
+
""", """
|
481 |
+
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
|
482 |
+
<p style="margin: 0;">Efficiency metrics will appear here</p>
|
483 |
+
</div>
|
484 |
+
""", get_statistics()
|
485 |
+
|
486 |
+
# Add clear functionality to the Enter key
|
487 |
+
msg.submit(lambda: "", outputs=[msg])
|
488 |
+
|
489 |
+
if __name__ == "__main__":
|
490 |
+
print(f"\n{'='*60}")
|
491 |
+
print(f" DO I REALLY NEED A HUGE LLM? - STARTUP")
|
492 |
+
print(f"{'='*60}")
|
493 |
+
print(f"[LAUNCH] Starting Gradio app...")
|
494 |
+
print(f"[LAUNCH] Environment: TOKENIZERS_PARALLELISM={os.environ.get('TOKENIZERS_PARALLELISM')}")
|
495 |
+
print(f"[LAUNCH] Models configured:")
|
496 |
+
for k, v in MODEL_CONFIGS.items():
|
497 |
+
print(f" - {k}: {v['name']} ({v['icon']})")
|
498 |
+
print(f"[LAUNCH] OpenRouter API Key: {'✓ SET' if OPENROUTER_API_KEY else '✗ NOT SET (Demo Mode)'}")
|
499 |
+
print(f"{'='*60}\n")
|
500 |
+
demo.launch(share=False)
|
bertmodel.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# my_text_classifier.py
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
from typing import Optional
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
# Use the model from Hugging Face
|
9 |
+
_MODEL_NAME = "monsimas/ModernBERT-ecoRouter"
|
10 |
+
|
11 |
+
# Load tokenizer and model at import time so we don’t pay the I/O cost on every call
|
12 |
+
try:
|
13 |
+
_TOKENIZER = AutoTokenizer.from_pretrained(_MODEL_NAME)
|
14 |
+
except Exception as e:
|
15 |
+
raise RuntimeError(f"Failed to load tokenizer from {_MODEL_NAME}: {e}")
|
16 |
+
|
17 |
+
try:
|
18 |
+
_MODEL = AutoModelForSequenceClassification.from_pretrained(_MODEL_NAME)
|
19 |
+
_MODEL.eval() # evaluation mode
|
20 |
+
except Exception as e:
|
21 |
+
raise RuntimeError(f"Failed to load model from {_MODEL_NAME}: {e}")
|
22 |
+
|
23 |
+
|
24 |
+
def predict_label(
|
25 |
+
text: str,
|
26 |
+
tokenizer: Optional[AutoTokenizer] = None,
|
27 |
+
model: Optional[AutoModelForSequenceClassification] = None
|
28 |
+
) -> str:
|
29 |
+
"""
|
30 |
+
Classify a single string and return the predicted label.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
text: The input text to classify.
|
34 |
+
tokenizer: (optional) tokenizer instance; defaults to the module-level tokenizer.
|
35 |
+
model: (optional) model instance; defaults to the module-level model.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
The name of the predicted class (as per `model.config.id2label`).
|
39 |
+
|
40 |
+
Raises:
|
41 |
+
ValueError: if the model’s config has no `id2label` mapping.
|
42 |
+
"""
|
43 |
+
tok = tokenizer or _TOKENIZER
|
44 |
+
mdl = model or _MODEL
|
45 |
+
|
46 |
+
# Tokenize
|
47 |
+
inputs = tok([text], padding=True, truncation=True, return_tensors="pt")
|
48 |
+
|
49 |
+
# Inference
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = mdl(**inputs)
|
52 |
+
|
53 |
+
logits = outputs.logits
|
54 |
+
pred_id = torch.argmax(logits, dim=-1).item()
|
55 |
+
|
56 |
+
# Map to label name
|
57 |
+
if not hasattr(mdl.config, "id2label") or len(mdl.config.id2label) == 0:
|
58 |
+
raise ValueError("Model config does not contain an id2label mapping.")
|
59 |
+
return mdl.config.id2label[pred_id]
|
60 |
+
|
61 |
+
"""
|
62 |
+
# Example usage
|
63 |
+
if __name__ == "__main__":
|
64 |
+
sample = "This is an example sentence to classify."
|
65 |
+
label = predict_label(sample)
|
66 |
+
print(f"Input: {sample}\nPredicted label: {label}")
|
67 |
+
|
68 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.16.0
|
2 |
+
python-dotenv
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
requests
|