Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,147 @@
|
|
1 |
|
2 |
-
import pandas as pd
|
3 |
|
4 |
|
5 |
-
df = pd.read_json("./tourisme_chatbot.json")
|
6 |
|
7 |
-
context_data = []
|
8 |
-
for i in range(len(df)):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
|
18 |
-
import os
|
19 |
|
20 |
-
# Get the secret key from the environment
|
21 |
-
groq_key = os.environ.get('groq_api_key')
|
22 |
|
23 |
-
## LLM used for RAG
|
24 |
-
from langchain_groq import ChatGroq
|
25 |
|
26 |
-
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
27 |
|
28 |
-
## Embedding model!
|
29 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
30 |
-
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
31 |
|
32 |
-
# create vector store!
|
33 |
-
from langchain_chroma import Chroma
|
34 |
|
35 |
-
vectorstore = Chroma(
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
# add data to vector nstore
|
42 |
-
vectorstore.add_texts(context_data)
|
43 |
|
44 |
-
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
47 |
|
|
|
48 |
template = ("""You are a Moroccan tourism expert.
|
49 |
Use the provided context to answer the question.
|
50 |
If you don't know the answer, say so. Explain your answer in detail.
|
@@ -55,30 +152,26 @@ template = ("""You are a Moroccan tourism expert.
|
|
55 |
|
56 |
rag_prompt = PromptTemplate.from_template(template)
|
57 |
|
58 |
-
|
59 |
-
from langchain_core.runnables import RunnablePassthrough
|
60 |
-
|
61 |
rag_chain = (
|
62 |
-
{"context":
|
63 |
| rag_prompt
|
64 |
| llm
|
65 |
| StrOutputParser()
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
def rag_memory_stream(text):
|
|
|
71 |
partial_text = ""
|
72 |
for new_text in rag_chain.stream(text):
|
73 |
partial_text += new_text
|
74 |
yield partial_text
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
title = "Real-time AI App with Groq API and LangChain to Answer Morroco Tourism questions"
|
82 |
demo = gr.Interface(
|
83 |
title=title,
|
84 |
fn=rag_memory_stream,
|
@@ -88,6 +181,5 @@ demo = gr.Interface(
|
|
88 |
allow_flagging="never",
|
89 |
)
|
90 |
|
91 |
-
|
92 |
if __name__ == "__main__":
|
93 |
-
demo.launch()
|
|
|
1 |
|
2 |
+
# import pandas as pd
|
3 |
|
4 |
|
5 |
+
# df = pd.read_json("./tourisme_chatbot.json")
|
6 |
|
7 |
+
# context_data = []
|
8 |
+
# for i in range(len(df)):
|
9 |
+
# context = ""
|
10 |
+
# for j in range(4):
|
11 |
+
# context += df.columns[j]
|
12 |
+
# context += ": "
|
13 |
+
# context += df.iloc[i][j]
|
14 |
+
# context += " "
|
15 |
+
# context_data.append(context)
|
16 |
|
17 |
|
18 |
+
# import os
|
19 |
|
20 |
+
# # Get the secret key from the environment
|
21 |
+
# groq_key = os.environ.get('groq_api_key')
|
22 |
|
23 |
+
# ## LLM used for RAG
|
24 |
+
# from langchain_groq import ChatGroq
|
25 |
|
26 |
+
# llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
27 |
|
28 |
+
# ## Embedding model!
|
29 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
30 |
+
# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
31 |
|
32 |
+
# # create vector store!
|
33 |
+
# from langchain_chroma import Chroma
|
34 |
|
35 |
+
# vectorstore = Chroma(
|
36 |
+
# collection_name="tourism_dataset_store",
|
37 |
+
# embedding_function=embed_model,
|
38 |
+
# persist_directory="./",
|
39 |
+
# )
|
40 |
+
|
41 |
+
# # add data to vector nstore
|
42 |
+
# vectorstore.add_texts(context_data)
|
43 |
+
|
44 |
+
# retriever = vectorstore.as_retriever()
|
45 |
+
|
46 |
+
# from langchain_core.prompts import PromptTemplate
|
47 |
+
|
48 |
+
# template = ("""You are a Moroccan tourism expert.
|
49 |
+
# Use the provided context to answer the question.
|
50 |
+
# If you don't know the answer, say so. Explain your answer in detail.
|
51 |
+
# Do not discuss the context in your response; just provide the answer directly.
|
52 |
+
# Context: {context}
|
53 |
+
# Question: {question}
|
54 |
+
# Answer:""")
|
55 |
+
|
56 |
+
# rag_prompt = PromptTemplate.from_template(template)
|
57 |
+
|
58 |
+
# from langchain_core.output_parsers import StrOutputParser
|
59 |
+
# from langchain_core.runnables import RunnablePassthrough
|
60 |
+
|
61 |
+
# rag_chain = (
|
62 |
+
# {"context": retriever, "question": RunnablePassthrough()}
|
63 |
+
# | rag_prompt
|
64 |
+
# | llm
|
65 |
+
# | StrOutputParser()
|
66 |
+
# )
|
67 |
+
|
68 |
+
# import gradio as gr
|
69 |
+
|
70 |
+
# def rag_memory_stream(text):
|
71 |
+
# partial_text = ""
|
72 |
+
# for new_text in rag_chain.stream(text):
|
73 |
+
# partial_text += new_text
|
74 |
+
# yield partial_text
|
75 |
+
|
76 |
+
# examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?']
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# title = "Real-time AI App with Groq API and LangChain to Answer Morroco Tourism questions"
|
82 |
+
# demo = gr.Interface(
|
83 |
+
# title=title,
|
84 |
+
# fn=rag_memory_stream,
|
85 |
+
# inputs="text",
|
86 |
+
# outputs="text",
|
87 |
+
# examples=examples,
|
88 |
+
# allow_flagging="never",
|
89 |
+
# )
|
90 |
|
|
|
|
|
91 |
|
92 |
+
# if __name__ == "__main__":
|
93 |
+
# demo.launch()
|
94 |
|
95 |
+
import os
|
96 |
+
import pandas as pd
|
97 |
+
import gradio as gr
|
98 |
+
|
99 |
+
# Read JSON file
|
100 |
+
df = pd.read_json("./tourisme_chatbot.json")
|
101 |
+
|
102 |
+
context_data = []
|
103 |
+
for i in range(len(df)):
|
104 |
+
context = ""
|
105 |
+
for j in range(4):
|
106 |
+
context += df.columns[j]
|
107 |
+
context += ": "
|
108 |
+
context += df.iloc[i, j] # Using iloc to avoid the deprecation warning
|
109 |
+
context += " "
|
110 |
+
context_data.append(context)
|
111 |
+
|
112 |
+
# Lazy initialization function
|
113 |
+
llm = None
|
114 |
+
embed_model = None
|
115 |
+
vectorstore = None
|
116 |
+
groq_key = os.environ.get('groq_api_key')
|
117 |
+
|
118 |
+
def initialize_model():
|
119 |
+
global llm, embed_model, vectorstore
|
120 |
+
|
121 |
+
# Only initialize the models and vector store when needed
|
122 |
+
if llm is None:
|
123 |
+
from langchain_groq import ChatGroq
|
124 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
125 |
+
|
126 |
+
if embed_model is None:
|
127 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
128 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
129 |
+
|
130 |
+
if vectorstore is None:
|
131 |
+
from langchain_chroma import Chroma
|
132 |
+
vectorstore = Chroma(
|
133 |
+
collection_name="tourism_dataset_store",
|
134 |
+
embedding_function=embed_model,
|
135 |
+
persist_directory="./",
|
136 |
+
)
|
137 |
+
vectorstore.add_texts(context_data) # Adding the context data to the vector store
|
138 |
+
|
139 |
+
# RAG Chain setup
|
140 |
from langchain_core.prompts import PromptTemplate
|
141 |
+
from langchain_core.output_parsers import StrOutputParser
|
142 |
+
from langchain_core.runnables import RunnablePassthrough
|
143 |
|
144 |
+
# Define prompt template
|
145 |
template = ("""You are a Moroccan tourism expert.
|
146 |
Use the provided context to answer the question.
|
147 |
If you don't know the answer, say so. Explain your answer in detail.
|
|
|
152 |
|
153 |
rag_prompt = PromptTemplate.from_template(template)
|
154 |
|
155 |
+
# Create RAG chain
|
|
|
|
|
156 |
rag_chain = (
|
157 |
+
{"context": vectorstore.as_retriever(), "question": RunnablePassthrough()}
|
158 |
| rag_prompt
|
159 |
| llm
|
160 |
| StrOutputParser()
|
161 |
)
|
162 |
|
163 |
+
# Function for real-time stream of results
|
|
|
164 |
def rag_memory_stream(text):
|
165 |
+
initialize_model() # Initialize models and vector store if not done yet
|
166 |
partial_text = ""
|
167 |
for new_text in rag_chain.stream(text):
|
168 |
partial_text += new_text
|
169 |
yield partial_text
|
170 |
|
171 |
+
# Gradio Interface setup
|
172 |
+
examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?', 'What can I do in Marrakech 40000 Morocco?']
|
|
|
173 |
|
174 |
+
title = "Real-time AI App with Groq API and LangChain to Answer Morocco Tourism Questions"
|
|
|
175 |
demo = gr.Interface(
|
176 |
title=title,
|
177 |
fn=rag_memory_stream,
|
|
|
181 |
allow_flagging="never",
|
182 |
)
|
183 |
|
|
|
184 |
if __name__ == "__main__":
|
185 |
+
demo.launch()
|