momondi's picture
Update app.py
6f13f4d verified
raw
history blame
2.24 kB
# import warnings
# warnings.filterwarnings('ignore')
import pandas as pd
df = pd.read_json("./tourisme_chatbot.json")
context_data = []
for i in range(len(df)):
context = ""
for j in range(4):
context += df.columns[j]
context += ": "
context += df.iloc[i][j]
context += " "
context_data.append(context)
# Get the secret key from the environment
import os
groq_api_key = os.environ.get('groq_api_keys')
#LLM Used for RAG
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_api_key)
#Embedding model
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="tourism_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
# Add data to vector store
vectorstore.add_texts(context_data)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""You are a Moroccan tourism expert.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
import gradio as gr
def rag_memory_stream(text):
partial_text = ""
for new_text in rag_chain.stream(text):
partial_text += new_text
yield partial_text
examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?']
title = "Real-time AI App with Groq API and LangChain to Answer Moroccon Tourism questions"
demo = gr.Interface(
title=title,
fn=rag_memory_stream,
inputs="text",
outputs="text",
allow_flagging="never",
)
if __name__ == '__main__':
demo.launch()