File size: 43,850 Bytes
9918a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aeb710
 
 
 
 
 
 
 
 
 
9918a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459832b
9918a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center>\n",
    "    <img src=\"./images/molssi_ai.png\"\n",
    "         alt=\"MolSSI-AI Logo\"\n",
    "         width=400 \n",
    "         height=250\n",
    "    />\n",
    "</center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Authors\n",
    "\n",
    "* **Mohammad Mostafanejad**, Molecular Sciences Software Institute, Blacksburg, VA, USA\n",
    "* **Ashley Ringer McDonald**, California Polytechnic State University, San Luis Obispo, CA, USA"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Learning Objectives\n",
    "- Perform exploratory data analysis (EDA), data preprocessing and featurization\n",
    "- Create and train a linear regression model and apply it to solve a practical cheminformatics problem\n",
    "- Evaluate the performance of the trained models on test data\n",
    "- Determine the importance of cross-validation on the quality of the trained models\n",
    "- Use PyCaret to automate the process of creating, training and evaluating the regression models"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before we start, let's make sure we have the necessary libraries ready for use."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:51:46.314577Z",
     "start_time": "2024-06-26T16:51:46.301095Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd                 # for data manipulation\n",
    "import seaborn as sns               # for data visualization\n",
    "import matplotlib.pyplot as plt     # for data visualization\n",
    "import numpy as np                  # for numerical operations\n",
    "\n",
    "from sklearn.preprocessing import StandardScaler            # for scaling the data\n",
    "from sklearn.model_selection import train_test_split        # for splitting the data into training and testing sets\n",
    "from sklearn.model_selection import cross_val_score, KFold  # for K-fold cross-validation\n",
    "from sklearn.linear_model import LinearRegression           # for creating a linear regression model\n",
    "from sklearn.dummy import DummyRegressor                    # for creating a base regressor to compare the model with\n",
    "from sklearn.metrics import mean_squared_error, r2_score    # for evaluating the model\n",
    "from sklearn.pipeline import make_pipeline                  # for building operational pipelines\n",
    "\n",
    "import sweetviz as sv               # for automatic EDA"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-info\">\n",
    "    <b>Note</b>\n",
    "    We have added comments to clarify the purpose of each imported library.\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Problem Statement"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this tutorial, we will be working on a **supervised learning** problem which involves both featurized data and their corresponding labels. The goal is to predict the solubility of a molecule based on its chemical structure using regression models. We are going to use the [Delaney's solubility dataset](https://doi.org/10.1021/ci034243x). It contains the chemical structures of 1144 compounds along with their experimentally measured solubility in mol/L. We provide a preprocessed version of the [dataset](https://github.com/MolSSI-Education/bcce-2024/tree/main/data) in the comma-separated value (CSV) format.\n",
    "\n",
    "Let's load the solubility data using the ``pandas`` library \n",
    "and take a look at a few samples in the dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:49:13.095479Z",
     "start_time": "2024-06-26T16:49:13.088117Z"
    }
   },
   "outputs": [],
   "source": [
    "# Path to the preprocessed data file\n",
    "data_path = \"./data/solubility-processed.csv\"\n",
    "\n",
    "# Read the data into a DataFrame\n",
    "df = pd.read_csv(data_path,\n",
    "                 dtype={\"MolLogP\": \"float64\", \n",
    "                        \"MolWt\": \"float64\",\n",
    "                        \"NumRotatableBonds\": \"int\",\n",
    "                        \"AromaticProportion\": \"float\",\n",
    "                        \"logS\": \"float64\"\n",
    "                        })\n",
    "\n",
    "# Display the first few rows of the DataFrame\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The dataset contains the following columns:\n",
    "- **MolLogP**: solubility values estimated by [Daylight CLOGP version 4.72](https://www.daylight.com/dayhtml/doc/clogp/index.html)\n",
    "- **MolWt**: molecular weight\n",
    "- **NumRotatableBonds**: number of rotatable bonds\n",
    "- **AromaticProportion**: the portion of heavy atoms that are in an aromatic ring\n",
    "- **logS**: the solubility of the molecule in mol/L measured at 25 $\\degree C$ "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Sidebar: A Brief Note on Solubility"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:49:44.121462Z",
     "start_time": "2024-06-26T16:49:44.025680Z"
    }
   },
   "source": [
    "The solubility of a molecule is a critical property in medicinal chemistry, drug discovery, and agrochemistry as it determines the bioavailability of a drug or pesticide.\n",
    "**Partition coefficient**, $P$, measures the propensity of a neutral compound to dissolve in a mixture of two immiscible solvents, often water and octanol. In simple terms, it determines how much of a solute dissolves in the aqueous phase versus the organic portion.\n",
    "\n",
    "The partition coefficient is defined as:\n",
    "\n",
    "$$\n",
    "P = \\frac{[Solute]_{\\text{organic}}}{[Solute]_{\\text{aqueous}}}     \n",
    "$$\n",
    "\n",
    "where $[Solute]_{\\text{organic}}$ and $[Solute]_{\\text{aqueous}}$ are the concentrations of the solute in the organic and aqueous phases, respectively.\n",
    "Instead of $P$, we often use the logarithm of the partition coefficient, $\\log P$, which is more convenient to work with. A negative value of $\\log P$ indicates that the solute is more soluble in water, while a positive value indicates that the solute is more soluble in the organic phase. When $\\log P$ is close to zero, the solute is equally soluble in both phases. Although $\\log P$ is a constant value, its magnitude is dependent on the measurement conditions and the choice of the organic solvent."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    What does logP value of 1 mean?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jupyter": {
     "source_hidden": true
    },
    "tags": []
   },
   "source": [
    "#### Solution\n",
    "\n",
    "A $\\log P$ value of 1 indicates that the solute is 10 times more soluble in the organic phase than in the aqueous phase."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exploratory Data Analysis (EDA)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The first step after stating the problem is to perform exploratory data analysis (EDA) on raw data. The EDA is crucial for data preprocessing pipelines as it helps us understand the nature of our data, identify the key patterns and relationships, and detect anomalies. The EDA involves summarizing the main characteristics of the data, often using visual methods. \n",
    "\n",
    "Loading the data into a Pandas DataFrame provides a convenient way to perform EDA. Let's start by getting a high-level overview of the dataset\n",
    "using the ``info`` function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    " # Analyse Dataset\n",
    "report = sv.analyze(df)\n",
    "\n",
    "# View and Save\n",
    "report.show_notebook()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Checking for Missing Values\n",
    "Since the data is already preprocessed, the number of ``Missing`` values for all features should be zero. The experimentally measured solubility in the last column ``logS`` is the target variable and the remaining columns are the features."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Are there any missing values in the data set?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Statistical Summary of the Data\n",
    "We also see a statistical summary of each numerical features in our dataset. The provided statistics include the value counts, mean, standard deviation, minimum, 25th percentile, median, average, 75th percentile, and maximum values for each feature.\n",
    "\n",
    "This information is extremely useful for understanding the data and the distribution of the features. It helps in identifying anomalies in the data or if our data requires any preprocessing. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    What is the range of the logS values in this dataset?\n",
    "    </div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Skewness\n",
    "The skewness of the data, which is determined by comparing the mean and median values, is also provided.\n",
    "\n",
    "The numerical values of skewness can be interpreted using the following rules:\n",
    "- The skewness value of zero indicates a perfect symmetrical distribution,\n",
    "- a skewness between -0.5 and 0.5 indicates an approximately symmetric distribution,\n",
    "- a skewness between -1 and -0.5 (or 0.5 and 1) indicates a moderately skewed distribution,\n",
    "- a skewness between -1.5 and -1 (or 1 and 1.5) indicates a highly skewed distribution, and\n",
    "- a skewness less than -1.5 (or greater than 1.5) indicates an extremely skewed distribution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Use the skewness rules and the histograms to categorize the skewness of all five properties based on the calculated skewness values.\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Correlation of Features with Target Variable\n",
    "The correlation matrix between the features and the target variable provides insights into the relationships between the features and the target variable(s). You may need to click on the \"Associations\" button in order to see the correlation matrix.\n",
    "\n",
    "A correlation value close to 1 indicates a strong positive relationship, while a correlation value close to -1 indicates a strong negative relationship. A correlation value close to 0 indicates no relationship between the features.\n",
    "\n",
    "The coloring scheme makes it easy to uncover the relationships between the features. The darker the color, the stronger the correlation. The diagonal line represents the correlation of each feature with itself, which is always 1. The blue color indicates a positive correlation, while the red color signifies a negative correlation (based on the provided key)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Based on the correlation plot, which feature is most strongly correlated with the logS value? And is it a negative or positive correlation?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Splitting the Data Into Training and Testing Sets\n",
    "\n",
    "Once we have a good understanding of the data, we can move on to the next step, which is splitting the data into a training set and a testing set. The training set is used to train the model, and the testing set is used to evaluate the model's performance. This process allows you to test the model's accuracy on unseen data and ensures that the model can generalize well to new data.\n",
    "\n",
    "It is extremely important to split the data first and then perform subsequent feature engineering steps. Feature engineering prior to splitting the data can cause a <b>data leakage</b> problem, allowing the model to \"see\" the testing data in the training phase. This violates our intention to treat the test data as a good representative sample of the real-world data. Data leakage leads to a model that performs well in training and testing but that performs poorly when given novel data."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To create our training and testing data sets, we will use the ``train_test_split`` function from the ``sklearn.model_selection`` module to split the data. The training set will be used to train the model, while the testing set will be used to evaluate the model's performance."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Useful information about the train test split process:\n",
    "- ``x`` generally denotes the input variables (the data the model will use to make predictions)\n",
    "- ``y`` is often used for target variable (what we are trying to predict)\n",
    "- ``test_size`` is used to assign the percentage of the data set aside for the testing set\n",
    "- ``random_state`` controls the random number generator used to shuffle the data before splitting it. In other words, it ensures that the same randomization is used each time you run the code, resulting in the same splits of the data. This is especially useful if you want to compare the performance of multiple models\n",
    "- ``shuffle = True`` ensures that the data is split randomly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create the feature matrix (X), feature vector (x), and the target vector (y)\n",
    "X = df.drop(columns=['logS'])\n",
    "x = X[\"MolLogP\"]\n",
    "y = df['logS']\n",
    "\n",
    "# Split the data into training and testing sets (80% training, 20% testing)\n",
    "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123, shuffle=True)\n",
    "\n",
    "# Reshape the data into 2D arrays of shape (n_samples, 1)\n",
    "# (if working with only one input feature)\n",
    "x_train = x_train.values.reshape(-1,1)\n",
    "x_test = x_test.values.reshape(-1,1)\n",
    "y_train = y_train.values.reshape(-1,1)\n",
    "y_test = y_test.values.reshape(-1,1)\n",
    "\n",
    "# Display the shapes of the training and testing sets\n",
    "x_train.shape, x_test.shape, y_train.shape, y_test.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-info\">\n",
    "    <b>Note</b>\n",
    "    Note the use of the <b>x</b> vector in the <b>train_test_split</b> function as initially we will train a model using only one input feature.<br> If we instead want to use all the available features we would need to use the <b>X</b> matrix that we have defined.\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Feature Engineering"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Once we have a good understanding of the data, we can move on to the next step, which is feature engineering. Feature engineering is the process of transforming the raw data into a format that is suitable for machine learning models. Feature engineering often involves creating new features, selecting the most important features, and transforming the existing features in order to improve the model's performance.\n",
    "\n",
    "After splitting our data, we need to scale our train and test features. Scaling is a crucial step in the data preprocessing pipeline as it ensures that all features have the same scale, since many machine learning models are sensitive to the scale of the input features. We will use the ``StandardScaler`` from the ``sklearn.preprocessing`` module to scale our features. ``StandardScaler`` transforms the data in such a manner that it has mean value of 0 and a standard deviation value of 1."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create the standard scaler object\n",
    "scaler = StandardScaler()\n",
    "\n",
    "# Fit and transform the training feature vector x_train\n",
    "x_train_scaled = scaler.fit_transform(x_train)\n",
    "\n",
    "# Transform the test feature vector x_test\n",
    "x_test_scaled = scaler.transform(x_test)\n",
    "\n",
    "# Make sure the training data is scaled correctly\n",
    "print(f\" Training feature mean: {x_train_scaled.mean():.5f}\")\n",
    "print(f\" Training feature standard deviation: {x_train_scaled.std():.5f}\\n\")\n",
    "\n",
    "# Print the scaler statistics on the test data\n",
    "print(f\" Testing feature mean: {x_test_scaled.mean():.5f}\")\n",
    "print(f\" Testing feature standard deviation: {x_test_scaled.std():.5f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-info\">\n",
    "    <b>Reminder:</b>\n",
    "    It is extremely important to split the data first and then fit the scaler on the training data, only. Fitting the scaler on the entire data and then splitting it causes the <b>data leakage</b> problem which violates our intention to treat the test data as a good representative sample of the real-world data.  \n",
    "</div>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Building and Training a Linear Regression Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Dummy Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The next step after the data preparation is to build and train our model. We will build a simple linear regression model which focuses on the relationship between a single feature (``MolLogP``) and the target variable (``logS``). "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    What is the reason behind choosing <b>MolLogP</b> as our main feature in the linear regression model?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In order to evaluate the performance of our model, we can first create a dummy \"model\" using the ``DummyRegressor`` class from the ``sklearn.dummy`` module. This class provides a simple way to create a model that calculates the mean value of the target feature and predicts this mean value for each observation. The ``fit`` method is used to train the model on the training data. Once the model is trained, we can use the ``predict`` method to make predictions on the test data. Note that the ``DummyRegressor`` is not for solving real problems!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:51:57.478588Z",
     "start_time": "2024-06-26T16:51:57.469581Z"
    }
   },
   "outputs": [],
   "source": [
    "# Create a dummy model using the mean value of the target property\n",
    "dummy_model = DummyRegressor(strategy=\"mean\")\n",
    "\n",
    "# Fit the model to the training data\n",
    "dummy_model.fit(x_train_scaled, y_train)\n",
    "\n",
    "# Make predictions on the testing data\n",
    "y_pred_dummy = dummy_model.predict(x_test_scaled)\n",
    "\n",
    "# Calculate the performance metrics and store them in a DataFrame\n",
    "results = pd.DataFrame({\n",
    "    \"Coefficients\": [np.array(dummy_model.constant_)],   # the regression coefficient\n",
    "    \"MSE\": mean_squared_error(y_test, y_pred_dummy),     # the mean squared error\n",
    "    \"R2\": r2_score(y_test, y_pred_dummy)                 # the coefficient of determination\n",
    "}, index=[\"Dummy\"])\n",
    "                            \n",
    "\n",
    "# Set the formatting style\n",
    "results.style.format(\n",
    "    {\n",
    "        \"MSE\": \"{:.3f}\",\n",
    "        \"R2\": \"{:.2f}\"\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Do we want to maximize or minimize the MSE value? What about R2?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Linear Regression Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's next build and train a single-feature input linear regression model. We will use the ``LinearRegression`` class from the ``sklearn.linear_model`` module to create the model. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a simple linear regression model\n",
    "simple_reg_model = LinearRegression()\n",
    "\n",
    "# Fit the model to the training data\n",
    "simple_reg_model.fit(x_train_scaled, y_train)\n",
    "\n",
    "# Make predictions on the test data\n",
    "y_pred_simple = simple_reg_model.predict(x_test_scaled)\n",
    "\n",
    "# Calculate the performance metrics\n",
    "simple_model_results = pd.DataFrame({\n",
    "    \"Coefficients\": [np.array(simple_reg_model.coef_)],   # the regression coefficient\n",
    "    \"MSE\": mean_squared_error(y_test, y_pred_simple),     # the mean squared error\n",
    "    \"R2\": r2_score(y_test, y_pred_simple)                 # the coefficient of determination\n",
    "}, index=[\"Simple-Linear-Regression\"])\n",
    "\n",
    "# Store the results into results DataFrame\n",
    "results = pd.concat([results, simple_model_results])\n",
    "results"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Which model is best at predicting the value of logS?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Visualizing Model Performance"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:52:00.069272Z",
     "start_time": "2024-06-26T16:51:59.817331Z"
    }
   },
   "outputs": [],
   "source": [
    "# Create a plot object \n",
    "fig, ax = plt.subplots(figsize=(5, 5))\n",
    "\n",
    "# Plot the test data\n",
    "ax.scatter(x_test_scaled, y_test, color='blue', label='Test Data')\n",
    "\n",
    "# Plot the simple linear regression model\n",
    "ax.plot(x_test_scaled, y_pred_simple, color='red', label='Simple Linear Regression')\n",
    "\n",
    "# Plot the baseline model\n",
    "ax.plot(x_test_scaled, y_pred_dummy, \"g--\", label=\"Dummy\")\n",
    "\n",
    "# Create the legends\n",
    "fig.legend(facecolor='white')\n",
    "\n",
    "# Show the plot\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Multiple Linear Regression Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Using the ``MolLogP`` feature with highest correlation with the target variable ``logS`` is a good starting point. The reason is that we knew beforehand that the CLOGP model would be a great predictor of solubility. However, we can improve our model by including other features that show some correlation with the target variable. This is where multiple linear regression comes in.\n",
    "\n",
    "Let's build a multiple linear regression model using all the features in our dataset. The process is very similar to building a single-feature linear regression model: Once again, we need to scale the data, train the model on the scaled training data using the ``fit`` method, and make predictions on the test data using the ``predict`` function."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-info\">\n",
    "    <b>Note</b>\n",
    "    Note the usage of <b>X</b> matrix instead of <b>x</b> vector in the <b>train_test_split</b> function, since now we want to use multiple features to predict the target variable.\n",
    "</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:52:01.901353Z",
     "start_time": "2024-06-26T16:52:01.889727Z"
    }
   },
   "outputs": [],
   "source": [
    "# Split the data into training and testing sets (80% training, 20% testing)\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123, shuffle=True)\n",
    "\n",
    "# Create the standard scaler object\n",
    "scaler = StandardScaler()\n",
    "\n",
    "# Fit and transform the training feature matrix X_train\n",
    "X_train_scaled = scaler.fit_transform(X_train)\n",
    "\n",
    "# Transform the test feature matrix X_test\n",
    "X_test_scaled = scaler.transform(X_test)\n",
    "\n",
    "# Create a linear regression model\n",
    "multi_feature_model = LinearRegression()\n",
    "\n",
    "# Fit the model to the training data\n",
    "multi_feature_model.fit(X_train_scaled, y_train)\n",
    "\n",
    "# Make predictions on the test data\n",
    "y_pred_multi_feature = multi_feature_model.predict(X_test_scaled)\n",
    "\n",
    "# Calculate the performance metrics\n",
    "multi_feature_model_results = pd.DataFrame({\n",
    "    \"Coefficients\": [np.array(multi_feature_model.coef_)],       # the regression coefficients\n",
    "    \"MSE\": mean_squared_error(y_test, y_pred_multi_feature),     # the mean squared error\n",
    "    \"R2\": r2_score(y_test, y_pred_multi_feature)                 # the coefficient of determination\n",
    "}, index=[\"Multi-Linear-Regression\"])\n",
    "\n",
    "# Store the results into results DataFrame\n",
    "results = pd.concat([results, multi_feature_model_results])\n",
    "results"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Exercise</b>\n",
    "    Which model is best at predicting the value of logS?\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Better Model Evaluation with Cross-Validation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We evaluate the performance of our trained model on the test dataset. However, the measured performance depends on the quality of the data in the splits (train/validation/test).\n",
    "In order to ameliorate this issue, we can use a technique called $k$-fold cross-validation. The $k$-fold cross-validation method splits the data into $k$ subsets,\n",
    "trains the data on the union of $k-1$ sets and measures the performance of the trained model on the $k$-th set, and repeats the process $k$ times to cover all subsets.\n",
    "The performance score is reported as the average score of $k$ experiments.\n",
    "\n",
    "<div style=\"text-align:center;\">\n",
    "  <img src=\"./images/K-fold_cross_validation_EN.svg\" style=\"display: block; margin: 0 auto; max-height:400px;\">\n",
    "</div>\n",
    "<br>\n",
    "<br>\n",
    "\n",
    "Here, we use the ``cross_val_score`` function from the ``sklearn.model_selection`` module to perform a 5-fold cross validation experiment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a standard scaler object\n",
    "scaler = StandardScaler()\n",
    "\n",
    "# Create a linear regression model\n",
    "multi_feature_model = LinearRegression()\n",
    "\n",
    "# Create a pipeline object\n",
    "pipeline = make_pipeline(scaler, multi_feature_model)\n",
    "\n",
    "# Create a KFold object with 5 folds (defined using n_splits)\n",
    "kf = KFold(n_splits=5, shuffle=True, random_state=123)\n",
    "\n",
    "# Perform cross-validation\n",
    "cv_results = cross_val_score(pipeline, X, y, cv=kf, scoring=\"neg_mean_squared_error\")\n",
    "\n",
    "# Calculate the mean and standard deviation of the cross-validation results\n",
    "print(f\"CV Results Mean MSE: {-cv_results.mean():.5f}\")\n",
    "print(f\"CV Results STD MSE: {cv_results.std():.5f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-success\"> \n",
    "    <b>Bonus Exercise</b>\n",
    "    Getting help from the code above, perform a 5-fold cross-validation using a simple linear regression model and compare the results with the previous model evaluation based on the R**2 metric.\n",
    "</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# perform a 5-fold cross-validation for a simple linear regression model\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Solution to Bonus Exercise\n",
    "\n",
    "```python\n",
    "\n",
    "    from sklearn.model_selection import cross_val_score, KFold\n",
    "    from sklearn.pipeline import make_pipeline\n",
    "\n",
    "    # Create a standard scaler object\n",
    "    scaler = StandardScaler()\n",
    "\n",
    "    # Create a linear regression model\n",
    "    simple_linear_model = LinearRegression()\n",
    "\n",
    "    # Create a pipeline object\n",
    "    pipeline = make_pipeline(scaler, simple_linear_model)\n",
    "\n",
    "    # Create a KFold object\n",
    "    kf = KFold(n_splits=5, shuffle=True, random_state=123)\n",
    "\n",
    "    # Perform cross-validation   Note we use x instead of X as the input data\n",
    "    cv_results = cross_val_score(pipeline, x.values.reshape(-1,1), y, cv=kf, scoring=\"r2\")\n",
    "\n",
    "    # Calculate the mean and standard deviation of the cross-validation results\n",
    "    print(f\"CV Results Mean MSE: {cv_results.mean():.5f}\")\n",
    "    print(f\"CV Results STD MSE: {cv_results.std():.5f}\")\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Is Linear Regression Really the Best Model for This Task? "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You have learned about the basics of linear regression,\n",
    "exploratory data analysis, feature engineering, and model evaluation. However, the process of building\n",
    "and evaluating multiple machine learning models to find the one best suited for your purposes can be time-consuming and repetitive.\n",
    "\n",
    "**PyCaret** is an open-source, low-code machine learning library written in Python that automates building \n",
    "the end-to-end machine learning processes. It provides a simple and efficient way to build, evaluate, and \n",
    "compare machine learning models. PyCaret is designed to help data scientists and machine learning engineers\n",
    "focus on the data and the problem at hand rather than the code.\n",
    "\n",
    "Let's see how we can use PyCaret to build and evaluate a wide range of machine learning models with just a\n",
    "few lines of code. First, we need to import the regression modules from PyCaret\n",
    "\n",
    "Before we move forward, we need to clean up the memory by restarting the kernel,\n",
    "import the necessary libraries for PyCaret and load the data into a Pandas\n",
    "DataFrame again."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython import get_ipython\n",
    "\n",
    "if get_ipython():\n",
    "    get_ipython().kernel.do_shutdown(restart=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:51:46.314577Z",
     "start_time": "2024-06-26T16:51:46.301095Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd                 # for data manipulation\n",
    "import seaborn as sns               # for data visualization\n",
    "import matplotlib.pyplot as plt     # for data visualization\n",
    "\n",
    "from pycaret.regression import *    # for comparing the models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:49:13.095479Z",
     "start_time": "2024-06-26T16:49:13.088117Z"
    }
   },
   "outputs": [],
   "source": [
    "# Path to the preprocessed data file\n",
    "data_path = \"./data/solubility-processed.csv\"\n",
    "\n",
    "# Read the data into a DataFrame\n",
    "df = pd.read_csv(data_path,\n",
    "                 dtype={\"MolLogP\": \"float64\", \n",
    "                        \"MolWt\": \"float64\",\n",
    "                        \"NumRotatableBonds\": \"int\",\n",
    "                        \"AromaticProportion\": \"float\",\n",
    "                        \"logS\": \"float64\"\n",
    "                        })"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "After importing PyCaret's regression modules, we can create a PyCaret experiment using the ``setup`` function.\n",
    "The ``setup`` function automatically preprocesses the data, splits it into training and testing sets, \n",
    "and sets up the environment for building and evaluating machine learning models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s = setup(data = df, target = 'logS', session_id = 123, fold = 5, n_jobs = 1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we can compare the performance of different machine learning models using the\n",
    "``compare_models`` function. The function trains and evaluates a wide range of \n",
    "machine learning models on the input data and displays a table of the models' \n",
    "performance metrics."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "best = compare_models()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Which Model is Best?\n",
    "\n",
    "- PyCaret shows which model it has determined is \"best\"\n",
    "- There are many metrics for scoring model performance. One good source for exploring other metrics is the ``sklearn.metrics`` section of the scikit-learn documentation (https://scikit-learn.org/stable/modules/model_evaluation.html)\n",
    "- Required computing time is also an important metric\n",
    "- Explainability is also important, especially if you are working with stakeholders who are not experts in machine learning\n",
    "- You need to decide which model is the best for your purposes"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Identifying the Most Important Features\n",
    "\n",
    "Feature importance measures how much each feature contributes to a specific build of a model, and many models allow you to display the feature importances after training a model. PyCaret can show the feature importance for the best model.\n",
    "\n",
    "Let's take a look at the feature importance plot for the best performing model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_model(best, plot='feature')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Which features are most important in your plot?\n",
    "\n",
    "- They can change between different training instances (especially if random state not set)\n",
    "- They are often different for different types of models"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Other options for the ``plot_model`` function to explore on your own:\n",
    "    \n",
    "* ``pipeline`` - Schematic drawing of the preprocessing pipeline\n",
    "* ``residuals_interactive`` - Interactive Residual plots\n",
    "* ``residuals`` - Residuals Plot\n",
    "* ``error`` - Prediction Error Plot\n",
    "* ``cooks`` - Cooks Distance Plot\n",
    "* ``rfe`` - Recursive Feat. Selection\n",
    "* ``learning`` - Learning Curve\n",
    "* ``vc`` - Validation Curve\n",
    "* ``manifold`` - Manifold Learning\n",
    "* ``feature`` - Feature Importance\n",
    "* ``feature_all`` - Feature Importance (All)\n",
    "* ``parameter`` - Model Hyperparameter\n",
    "* ``tree`` - Decision Tree"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Bonus Section: EDA Using Python Code\n",
    "\n",
    "We used the SweetViz library to do all our exploratory data analysis (EDA) in just a few lines of code. Sometimes, however, it is desirable to do additional exploration on your own. Below is the python code necessary to do the same analysis that SweetViz performed. This code provides a good set of templates for doing your own customized EDA."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can get a high-level overview of the dataset using the ``info`` function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-26T16:49:45.746932Z",
     "start_time": "2024-06-26T16:49:45.735372Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "df.info()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Since the data is already preprocessed, the value of ``Non-Null Count`` columns for all features should be equal to the total number of samples in the dataset, *i.e.,* 1144. All features are of numerical type ``float64``. The experimentally measured solubility in the last column ``logS`` is the target variable and the remaining columns are the features.\n",
    "\n",
    "In addition to ``info()``, Pandas provides another useful function called ``describe`` which provides a statistical summary of all numerical features in our dataset. The provided statistics involve the count, mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum values for each feature."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This information is extremely useful for understanding the data and the distribution of the features. It helps in identifying any missing values or anomalies in the data or if our data requires any preprocessing. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Visualizing the data can also be helpful. For example, the skeweness of the data, which is determined by comparing the mean and median values, can be visualized using Pandas's ``hist`` function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.hist(figsize=(8,8), edgecolor='black', grid=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Clearly, the ``MolLogP`` solubility values are normally distributed while other features are more or less positively or negatively skewed. The Pandas library helps us quantify these observations for each feature using the ``skew`` function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.skew()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The numerical values of skewness can be interpreted using the following rules:\n",
    "- The skewness value of zero indicates a perfect symmetrical distribution,\n",
    "- a skewness between -0.5 and 0.5 indicates an approximately symmetric distribution,\n",
    "- a skewness between -1 and -0.5 (or 0.5 and 1) indicates a moderately skewed distribution,\n",
    "- a skewness between -1.5 and -1 (or 1 and 1.5) indicates a highly skewed distribution, and\n",
    "- a skewness less than -1.5 (or greater than 1.5) indicates an extremely skewed distribution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we use Pandas's ``corr`` function to calculate the correlation matrix between the features and the target variable. The correlation matrix provides insights into the relationships between the features and the target variable(s). A correlation value close to 1 indicates a strong positive relationship, while a correlation value close to -1 indicates a strong negative relationship. A correlation value close to 0 indicates no relationship between the features."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.corr(method='pearson')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An easy way to examine the relationships between the features and the target variable is to use a heatmap correlation matrix plot. \n",
    "We use the Seaborn library to create a heatmap plot of the correlation matrix as shown below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a plot object\n",
    "plt.figure(figsize=(8,6))\n",
    "\n",
    "# Calculate the correlation matrix\n",
    "corr = df.corr()\n",
    "\n",
    "# Create a heatmap\n",
    "sns.set(font_scale=1.1)\n",
    "sns.heatmap(corr, annot=True, cmap=\"coolwarm\", fmt=\".2f\")\n",
    "\n",
    "# Display the heatmap\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Our coloring scheme makes it easy to uncover the relationships between the features. The darker the color, the stronger the correlation. The diagonal line represents the correlation of each feature with itself, which is always 1. In this plot, the red color indicates a positive correlation, while the blue color signifies a negative correlation."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "bcce",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}