Andrey Moskalenko
commited on
Commit
·
3d38624
1
Parent(s):
c94270d
Upload Train_fakenews_detector.ipynb
Browse files- Train_fakenews_detector.ipynb +1465 -0
Train_fakenews_detector.ipynb
ADDED
|
@@ -0,0 +1,1465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Data Preparation"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"Я нашел три датасета на kaggle по классификации фейков. Они все на английском, поэтому для поддержки русскуязычных статей будем использовать специально обученную для перевода новостей модель wmt19-ru-en. \n",
|
| 15 |
+
"\n",
|
| 16 |
+
"Выбранные датасеты:\n",
|
| 17 |
+
"* https://www.kaggle.com/c/fake-news/data\n",
|
| 18 |
+
"* https://www.kaggle.com/c/fakenewskdd2020/data\n",
|
| 19 |
+
"* https://www.kaggle.com/c/classifying-the-fake-news/data"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": 95,
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"import pandas as pd\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"df1_train = pd.read_csv('./data1/train.csv')"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": 96,
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [
|
| 38 |
+
{
|
| 39 |
+
"data": {
|
| 40 |
+
"text/html": [
|
| 41 |
+
"<div>\n",
|
| 42 |
+
"<style scoped>\n",
|
| 43 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 44 |
+
" vertical-align: middle;\n",
|
| 45 |
+
" }\n",
|
| 46 |
+
"\n",
|
| 47 |
+
" .dataframe tbody tr th {\n",
|
| 48 |
+
" vertical-align: top;\n",
|
| 49 |
+
" }\n",
|
| 50 |
+
"\n",
|
| 51 |
+
" .dataframe thead th {\n",
|
| 52 |
+
" text-align: right;\n",
|
| 53 |
+
" }\n",
|
| 54 |
+
"</style>\n",
|
| 55 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 56 |
+
" <thead>\n",
|
| 57 |
+
" <tr style=\"text-align: right;\">\n",
|
| 58 |
+
" <th></th>\n",
|
| 59 |
+
" <th>id</th>\n",
|
| 60 |
+
" <th>title</th>\n",
|
| 61 |
+
" <th>author</th>\n",
|
| 62 |
+
" <th>text</th>\n",
|
| 63 |
+
" <th>label</th>\n",
|
| 64 |
+
" </tr>\n",
|
| 65 |
+
" </thead>\n",
|
| 66 |
+
" <tbody>\n",
|
| 67 |
+
" <tr>\n",
|
| 68 |
+
" <th>0</th>\n",
|
| 69 |
+
" <td>0</td>\n",
|
| 70 |
+
" <td>House Dem Aide: We Didn’t Even See Comey’s Let...</td>\n",
|
| 71 |
+
" <td>Darrell Lucus</td>\n",
|
| 72 |
+
" <td>House Dem Aide: We Didn’t Even See Comey’s Let...</td>\n",
|
| 73 |
+
" <td>1</td>\n",
|
| 74 |
+
" </tr>\n",
|
| 75 |
+
" <tr>\n",
|
| 76 |
+
" <th>1</th>\n",
|
| 77 |
+
" <td>1</td>\n",
|
| 78 |
+
" <td>FLYNN: Hillary Clinton, Big Woman on Campus - ...</td>\n",
|
| 79 |
+
" <td>Daniel J. Flynn</td>\n",
|
| 80 |
+
" <td>Ever get the feeling your life circles the rou...</td>\n",
|
| 81 |
+
" <td>0</td>\n",
|
| 82 |
+
" </tr>\n",
|
| 83 |
+
" <tr>\n",
|
| 84 |
+
" <th>2</th>\n",
|
| 85 |
+
" <td>2</td>\n",
|
| 86 |
+
" <td>Why the Truth Might Get You Fired</td>\n",
|
| 87 |
+
" <td>Consortiumnews.com</td>\n",
|
| 88 |
+
" <td>Why the Truth Might Get You Fired October 29, ...</td>\n",
|
| 89 |
+
" <td>1</td>\n",
|
| 90 |
+
" </tr>\n",
|
| 91 |
+
" <tr>\n",
|
| 92 |
+
" <th>3</th>\n",
|
| 93 |
+
" <td>3</td>\n",
|
| 94 |
+
" <td>15 Civilians Killed In Single US Airstrike Hav...</td>\n",
|
| 95 |
+
" <td>Jessica Purkiss</td>\n",
|
| 96 |
+
" <td>Videos 15 Civilians Killed In Single US Airstr...</td>\n",
|
| 97 |
+
" <td>1</td>\n",
|
| 98 |
+
" </tr>\n",
|
| 99 |
+
" <tr>\n",
|
| 100 |
+
" <th>4</th>\n",
|
| 101 |
+
" <td>4</td>\n",
|
| 102 |
+
" <td>Iranian woman jailed for fictional unpublished...</td>\n",
|
| 103 |
+
" <td>Howard Portnoy</td>\n",
|
| 104 |
+
" <td>Print \\nAn Iranian woman has been sentenced to...</td>\n",
|
| 105 |
+
" <td>1</td>\n",
|
| 106 |
+
" </tr>\n",
|
| 107 |
+
" <tr>\n",
|
| 108 |
+
" <th>...</th>\n",
|
| 109 |
+
" <td>...</td>\n",
|
| 110 |
+
" <td>...</td>\n",
|
| 111 |
+
" <td>...</td>\n",
|
| 112 |
+
" <td>...</td>\n",
|
| 113 |
+
" <td>...</td>\n",
|
| 114 |
+
" </tr>\n",
|
| 115 |
+
" <tr>\n",
|
| 116 |
+
" <th>20795</th>\n",
|
| 117 |
+
" <td>20795</td>\n",
|
| 118 |
+
" <td>Rapper T.I.: Trump a ’Poster Child For White S...</td>\n",
|
| 119 |
+
" <td>Jerome Hudson</td>\n",
|
| 120 |
+
" <td>Rapper T. I. unloaded on black celebrities who...</td>\n",
|
| 121 |
+
" <td>0</td>\n",
|
| 122 |
+
" </tr>\n",
|
| 123 |
+
" <tr>\n",
|
| 124 |
+
" <th>20796</th>\n",
|
| 125 |
+
" <td>20796</td>\n",
|
| 126 |
+
" <td>N.F.L. Playoffs: Schedule, Matchups and Odds -...</td>\n",
|
| 127 |
+
" <td>Benjamin Hoffman</td>\n",
|
| 128 |
+
" <td>When the Green Bay Packers lost to the Washing...</td>\n",
|
| 129 |
+
" <td>0</td>\n",
|
| 130 |
+
" </tr>\n",
|
| 131 |
+
" <tr>\n",
|
| 132 |
+
" <th>20797</th>\n",
|
| 133 |
+
" <td>20797</td>\n",
|
| 134 |
+
" <td>Macy’s Is Said to Receive Takeover Approach by...</td>\n",
|
| 135 |
+
" <td>Michael J. de la Merced and Rachel Abrams</td>\n",
|
| 136 |
+
" <td>The Macy’s of today grew from the union of sev...</td>\n",
|
| 137 |
+
" <td>0</td>\n",
|
| 138 |
+
" </tr>\n",
|
| 139 |
+
" <tr>\n",
|
| 140 |
+
" <th>20798</th>\n",
|
| 141 |
+
" <td>20798</td>\n",
|
| 142 |
+
" <td>NATO, Russia To Hold Parallel Exercises In Bal...</td>\n",
|
| 143 |
+
" <td>Alex Ansary</td>\n",
|
| 144 |
+
" <td>NATO, Russia To Hold Parallel Exercises In Bal...</td>\n",
|
| 145 |
+
" <td>1</td>\n",
|
| 146 |
+
" </tr>\n",
|
| 147 |
+
" <tr>\n",
|
| 148 |
+
" <th>20799</th>\n",
|
| 149 |
+
" <td>20799</td>\n",
|
| 150 |
+
" <td>What Keeps the F-35 Alive</td>\n",
|
| 151 |
+
" <td>David Swanson</td>\n",
|
| 152 |
+
" <td>David Swanson is an author, activist, journa...</td>\n",
|
| 153 |
+
" <td>1</td>\n",
|
| 154 |
+
" </tr>\n",
|
| 155 |
+
" </tbody>\n",
|
| 156 |
+
"</table>\n",
|
| 157 |
+
"<p>20800 rows × 5 columns</p>\n",
|
| 158 |
+
"</div>"
|
| 159 |
+
],
|
| 160 |
+
"text/plain": [
|
| 161 |
+
" id title \\\n",
|
| 162 |
+
"0 0 House Dem Aide: We Didn’t Even See Comey’s Let... \n",
|
| 163 |
+
"1 1 FLYNN: Hillary Clinton, Big Woman on Campus - ... \n",
|
| 164 |
+
"2 2 Why the Truth Might Get You Fired \n",
|
| 165 |
+
"3 3 15 Civilians Killed In Single US Airstrike Hav... \n",
|
| 166 |
+
"4 4 Iranian woman jailed for fictional unpublished... \n",
|
| 167 |
+
"... ... ... \n",
|
| 168 |
+
"20795 20795 Rapper T.I.: Trump a ’Poster Child For White S... \n",
|
| 169 |
+
"20796 20796 N.F.L. Playoffs: Schedule, Matchups and Odds -... \n",
|
| 170 |
+
"20797 20797 Macy’s Is Said to Receive Takeover Approach by... \n",
|
| 171 |
+
"20798 20798 NATO, Russia To Hold Parallel Exercises In Bal... \n",
|
| 172 |
+
"20799 20799 What Keeps the F-35 Alive \n",
|
| 173 |
+
"\n",
|
| 174 |
+
" author \\\n",
|
| 175 |
+
"0 Darrell Lucus \n",
|
| 176 |
+
"1 Daniel J. Flynn \n",
|
| 177 |
+
"2 Consortiumnews.com \n",
|
| 178 |
+
"3 Jessica Purkiss \n",
|
| 179 |
+
"4 Howard Portnoy \n",
|
| 180 |
+
"... ... \n",
|
| 181 |
+
"20795 Jerome Hudson \n",
|
| 182 |
+
"20796 Benjamin Hoffman \n",
|
| 183 |
+
"20797 Michael J. de la Merced and Rachel Abrams \n",
|
| 184 |
+
"20798 Alex Ansary \n",
|
| 185 |
+
"20799 David Swanson \n",
|
| 186 |
+
"\n",
|
| 187 |
+
" text label \n",
|
| 188 |
+
"0 House Dem Aide: We Didn’t Even See Comey’s Let... 1 \n",
|
| 189 |
+
"1 Ever get the feeling your life circles the rou... 0 \n",
|
| 190 |
+
"2 Why the Truth Might Get You Fired October 29, ... 1 \n",
|
| 191 |
+
"3 Videos 15 Civilians Killed In Single US Airstr... 1 \n",
|
| 192 |
+
"4 Print \\nAn Iranian woman has been sentenced to... 1 \n",
|
| 193 |
+
"... ... ... \n",
|
| 194 |
+
"20795 Rapper T. I. unloaded on black celebrities who... 0 \n",
|
| 195 |
+
"20796 When the Green Bay Packers lost to the Washing... 0 \n",
|
| 196 |
+
"20797 The Macy’s of today grew from the union of sev... 0 \n",
|
| 197 |
+
"20798 NATO, Russia To Hold Parallel Exercises In Bal... 1 \n",
|
| 198 |
+
"20799 David Swanson is an author, activist, journa... 1 \n",
|
| 199 |
+
"\n",
|
| 200 |
+
"[20800 rows x 5 columns]"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
"execution_count": 96,
|
| 204 |
+
"metadata": {},
|
| 205 |
+
"output_type": "execute_result"
|
| 206 |
+
}
|
| 207 |
+
],
|
| 208 |
+
"source": [
|
| 209 |
+
"df1_train"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": 97,
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"outputs": [],
|
| 217 |
+
"source": [
|
| 218 |
+
"df1_train['text'] = df1_train.apply(lambda x: str(x.title) + '. ' + str(x.text), axis=1)\n",
|
| 219 |
+
"df1_train = df1_train[['text', 'label']]"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": 98,
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"df2_train = pd.read_csv('./data2/train.csv', sep='\\t')"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": 99,
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"# Битая строка\n",
|
| 238 |
+
"df2_train = df2_train.drop([1615])"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 100,
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"outputs": [
|
| 246 |
+
{
|
| 247 |
+
"data": {
|
| 248 |
+
"text/html": [
|
| 249 |
+
"<div>\n",
|
| 250 |
+
"<style scoped>\n",
|
| 251 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 252 |
+
" vertical-align: middle;\n",
|
| 253 |
+
" }\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" .dataframe tbody tr th {\n",
|
| 256 |
+
" vertical-align: top;\n",
|
| 257 |
+
" }\n",
|
| 258 |
+
"\n",
|
| 259 |
+
" .dataframe thead th {\n",
|
| 260 |
+
" text-align: right;\n",
|
| 261 |
+
" }\n",
|
| 262 |
+
"</style>\n",
|
| 263 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 264 |
+
" <thead>\n",
|
| 265 |
+
" <tr style=\"text-align: right;\">\n",
|
| 266 |
+
" <th></th>\n",
|
| 267 |
+
" <th>text</th>\n",
|
| 268 |
+
" <th>label</th>\n",
|
| 269 |
+
" </tr>\n",
|
| 270 |
+
" </thead>\n",
|
| 271 |
+
" <tbody>\n",
|
| 272 |
+
" <tr>\n",
|
| 273 |
+
" <th>0</th>\n",
|
| 274 |
+
" <td>Get the latest from TODAY Sign up for our news...</td>\n",
|
| 275 |
+
" <td>1</td>\n",
|
| 276 |
+
" </tr>\n",
|
| 277 |
+
" <tr>\n",
|
| 278 |
+
" <th>1</th>\n",
|
| 279 |
+
" <td>2d Conan On The Funeral Trump Will Be Invited...</td>\n",
|
| 280 |
+
" <td>1</td>\n",
|
| 281 |
+
" </tr>\n",
|
| 282 |
+
" <tr>\n",
|
| 283 |
+
" <th>2</th>\n",
|
| 284 |
+
" <td>It’s safe to say that Instagram Stories has fa...</td>\n",
|
| 285 |
+
" <td>0</td>\n",
|
| 286 |
+
" </tr>\n",
|
| 287 |
+
" <tr>\n",
|
| 288 |
+
" <th>3</th>\n",
|
| 289 |
+
" <td>Much like a certain Amazon goddess with a lass...</td>\n",
|
| 290 |
+
" <td>0</td>\n",
|
| 291 |
+
" </tr>\n",
|
| 292 |
+
" <tr>\n",
|
| 293 |
+
" <th>4</th>\n",
|
| 294 |
+
" <td>At a time when the perfect outfit is just one ...</td>\n",
|
| 295 |
+
" <td>0</td>\n",
|
| 296 |
+
" </tr>\n",
|
| 297 |
+
" <tr>\n",
|
| 298 |
+
" <th>...</th>\n",
|
| 299 |
+
" <td>...</td>\n",
|
| 300 |
+
" <td>...</td>\n",
|
| 301 |
+
" </tr>\n",
|
| 302 |
+
" <tr>\n",
|
| 303 |
+
" <th>4982</th>\n",
|
| 304 |
+
" <td>The storybook romance of WWE stars John Cena a...</td>\n",
|
| 305 |
+
" <td>0</td>\n",
|
| 306 |
+
" </tr>\n",
|
| 307 |
+
" <tr>\n",
|
| 308 |
+
" <th>4983</th>\n",
|
| 309 |
+
" <td>The actor told friends he’s responsible for en...</td>\n",
|
| 310 |
+
" <td>0</td>\n",
|
| 311 |
+
" </tr>\n",
|
| 312 |
+
" <tr>\n",
|
| 313 |
+
" <th>4984</th>\n",
|
| 314 |
+
" <td>Sarah Hyland is getting real. The Modern Fami...</td>\n",
|
| 315 |
+
" <td>0</td>\n",
|
| 316 |
+
" </tr>\n",
|
| 317 |
+
" <tr>\n",
|
| 318 |
+
" <th>4985</th>\n",
|
| 319 |
+
" <td>Production has been suspended on the sixth and...</td>\n",
|
| 320 |
+
" <td>0</td>\n",
|
| 321 |
+
" </tr>\n",
|
| 322 |
+
" <tr>\n",
|
| 323 |
+
" <th>4986</th>\n",
|
| 324 |
+
" <td>A jury ruled against Bill Cosby in his sexual ...</td>\n",
|
| 325 |
+
" <td>0</td>\n",
|
| 326 |
+
" </tr>\n",
|
| 327 |
+
" </tbody>\n",
|
| 328 |
+
"</table>\n",
|
| 329 |
+
"<p>4986 rows × 2 columns</p>\n",
|
| 330 |
+
"</div>"
|
| 331 |
+
],
|
| 332 |
+
"text/plain": [
|
| 333 |
+
" text label\n",
|
| 334 |
+
"0 Get the latest from TODAY Sign up for our news... 1\n",
|
| 335 |
+
"1 2d Conan On The Funeral Trump Will Be Invited... 1\n",
|
| 336 |
+
"2 It’s safe to say that Instagram Stories has fa... 0\n",
|
| 337 |
+
"3 Much like a certain Amazon goddess with a lass... 0\n",
|
| 338 |
+
"4 At a time when the perfect outfit is just one ... 0\n",
|
| 339 |
+
"... ... ...\n",
|
| 340 |
+
"4982 The storybook romance of WWE stars John Cena a... 0\n",
|
| 341 |
+
"4983 The actor told friends he’s responsible for en... 0\n",
|
| 342 |
+
"4984 Sarah Hyland is getting real. The Modern Fami... 0\n",
|
| 343 |
+
"4985 Production has been suspended on the sixth and... 0\n",
|
| 344 |
+
"4986 A jury ruled against Bill Cosby in his sexual ... 0\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"[4986 rows x 2 columns]"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
"execution_count": 100,
|
| 350 |
+
"metadata": {},
|
| 351 |
+
"output_type": "execute_result"
|
| 352 |
+
}
|
| 353 |
+
],
|
| 354 |
+
"source": [
|
| 355 |
+
"df2_train"
|
| 356 |
+
]
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"cell_type": "code",
|
| 360 |
+
"execution_count": 104,
|
| 361 |
+
"metadata": {},
|
| 362 |
+
"outputs": [],
|
| 363 |
+
"source": [
|
| 364 |
+
"df3_train = pd.read_csv('./data3/training.csv')"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"cell_type": "code",
|
| 369 |
+
"execution_count": 105,
|
| 370 |
+
"metadata": {},
|
| 371 |
+
"outputs": [],
|
| 372 |
+
"source": [
|
| 373 |
+
"df3_train['text'] = df3_train.apply(lambda x: str(x.title) + '. ' + str(x.text), axis=1)\n",
|
| 374 |
+
"df3_train = df3_train[['text', 'label']]"
|
| 375 |
+
]
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"cell_type": "code",
|
| 379 |
+
"execution_count": 106,
|
| 380 |
+
"metadata": {},
|
| 381 |
+
"outputs": [],
|
| 382 |
+
"source": [
|
| 383 |
+
"all_data_train = df1_train.append(df2_train).append(df3_train)\n",
|
| 384 |
+
"all_data_train.to_csv('./train.csv', index=False)"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"cell_type": "markdown",
|
| 389 |
+
"metadata": {},
|
| 390 |
+
"source": [
|
| 391 |
+
"# Training"
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "code",
|
| 396 |
+
"execution_count": 1,
|
| 397 |
+
"metadata": {
|
| 398 |
+
"id": "zriTdjauH8iQ"
|
| 399 |
+
},
|
| 400 |
+
"outputs": [],
|
| 401 |
+
"source": [
|
| 402 |
+
"#!pip install transformers\n",
|
| 403 |
+
"import transformers"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "code",
|
| 408 |
+
"execution_count": 2,
|
| 409 |
+
"metadata": {
|
| 410 |
+
"id": "TFh3upySL3XG"
|
| 411 |
+
},
|
| 412 |
+
"outputs": [],
|
| 413 |
+
"source": [
|
| 414 |
+
"from transformers import Trainer, TrainingArguments, LineByLineTextDataset"
|
| 415 |
+
]
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"cell_type": "code",
|
| 419 |
+
"execution_count": 3,
|
| 420 |
+
"metadata": {
|
| 421 |
+
"id": "H2Ym6YhyNfON"
|
| 422 |
+
},
|
| 423 |
+
"outputs": [],
|
| 424 |
+
"source": [
|
| 425 |
+
"import pandas as pd"
|
| 426 |
+
]
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"cell_type": "code",
|
| 430 |
+
"execution_count": 4,
|
| 431 |
+
"metadata": {
|
| 432 |
+
"id": "ueRyDnvgNgpW"
|
| 433 |
+
},
|
| 434 |
+
"outputs": [],
|
| 435 |
+
"source": [
|
| 436 |
+
"from datasets import Dataset"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 5,
|
| 442 |
+
"metadata": {
|
| 443 |
+
"id": "HVBCtqyjNhLn"
|
| 444 |
+
},
|
| 445 |
+
"outputs": [],
|
| 446 |
+
"source": [
|
| 447 |
+
"df = pd.read_csv('./train.csv')"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"cell_type": "code",
|
| 452 |
+
"execution_count": 6,
|
| 453 |
+
"metadata": {
|
| 454 |
+
"colab": {
|
| 455 |
+
"base_uri": "https://localhost:8080/",
|
| 456 |
+
"height": 424
|
| 457 |
+
},
|
| 458 |
+
"id": "f7j8fEl1Nogb",
|
| 459 |
+
"outputId": "3b5b13a0-4c34-412c-9718-5b0decb855cc"
|
| 460 |
+
},
|
| 461 |
+
"outputs": [
|
| 462 |
+
{
|
| 463 |
+
"data": {
|
| 464 |
+
"text/html": [
|
| 465 |
+
"<div>\n",
|
| 466 |
+
"<style scoped>\n",
|
| 467 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 468 |
+
" vertical-align: middle;\n",
|
| 469 |
+
" }\n",
|
| 470 |
+
"\n",
|
| 471 |
+
" .dataframe tbody tr th {\n",
|
| 472 |
+
" vertical-align: top;\n",
|
| 473 |
+
" }\n",
|
| 474 |
+
"\n",
|
| 475 |
+
" .dataframe thead th {\n",
|
| 476 |
+
" text-align: right;\n",
|
| 477 |
+
" }\n",
|
| 478 |
+
"</style>\n",
|
| 479 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 480 |
+
" <thead>\n",
|
| 481 |
+
" <tr style=\"text-align: right;\">\n",
|
| 482 |
+
" <th></th>\n",
|
| 483 |
+
" <th>text</th>\n",
|
| 484 |
+
" <th>label</th>\n",
|
| 485 |
+
" </tr>\n",
|
| 486 |
+
" </thead>\n",
|
| 487 |
+
" <tbody>\n",
|
| 488 |
+
" <tr>\n",
|
| 489 |
+
" <th>0</th>\n",
|
| 490 |
+
" <td>House Dem Aide: We Didn’t Even See Comey’s Let...</td>\n",
|
| 491 |
+
" <td>1</td>\n",
|
| 492 |
+
" </tr>\n",
|
| 493 |
+
" <tr>\n",
|
| 494 |
+
" <th>1</th>\n",
|
| 495 |
+
" <td>FLYNN: Hillary Clinton, Big Woman on Campus - ...</td>\n",
|
| 496 |
+
" <td>0</td>\n",
|
| 497 |
+
" </tr>\n",
|
| 498 |
+
" <tr>\n",
|
| 499 |
+
" <th>2</th>\n",
|
| 500 |
+
" <td>Why the Truth Might Get You Fired.Why the Trut...</td>\n",
|
| 501 |
+
" <td>1</td>\n",
|
| 502 |
+
" </tr>\n",
|
| 503 |
+
" <tr>\n",
|
| 504 |
+
" <th>3</th>\n",
|
| 505 |
+
" <td>15 Civilians Killed In Single US Airstrike Hav...</td>\n",
|
| 506 |
+
" <td>1</td>\n",
|
| 507 |
+
" </tr>\n",
|
| 508 |
+
" <tr>\n",
|
| 509 |
+
" <th>4</th>\n",
|
| 510 |
+
" <td>Iranian woman jailed for fictional unpublished...</td>\n",
|
| 511 |
+
" <td>1</td>\n",
|
| 512 |
+
" </tr>\n",
|
| 513 |
+
" <tr>\n",
|
| 514 |
+
" <th>...</th>\n",
|
| 515 |
+
" <td>...</td>\n",
|
| 516 |
+
" <td>...</td>\n",
|
| 517 |
+
" </tr>\n",
|
| 518 |
+
" <tr>\n",
|
| 519 |
+
" <th>57209</th>\n",
|
| 520 |
+
" <td>CHICAGO TRUMP RALLY CANCELLED: Radicals And BL...</td>\n",
|
| 521 |
+
" <td>1</td>\n",
|
| 522 |
+
" </tr>\n",
|
| 523 |
+
" <tr>\n",
|
| 524 |
+
" <th>57210</th>\n",
|
| 525 |
+
" <td>Trump supports completion of Dakota Access Pip...</td>\n",
|
| 526 |
+
" <td>0</td>\n",
|
| 527 |
+
" </tr>\n",
|
| 528 |
+
" <tr>\n",
|
| 529 |
+
" <th>57211</th>\n",
|
| 530 |
+
" <td>Obama Can’t Stop Winning As New Jobs Report S...</td>\n",
|
| 531 |
+
" <td>1</td>\n",
|
| 532 |
+
" </tr>\n",
|
| 533 |
+
" <tr>\n",
|
| 534 |
+
" <th>57212</th>\n",
|
| 535 |
+
" <td>Turkey bank regulator dismisses 'rumors' after...</td>\n",
|
| 536 |
+
" <td>0</td>\n",
|
| 537 |
+
" </tr>\n",
|
| 538 |
+
" <tr>\n",
|
| 539 |
+
" <th>57213</th>\n",
|
| 540 |
+
" <td>California mayors ask for governor's support f...</td>\n",
|
| 541 |
+
" <td>0</td>\n",
|
| 542 |
+
" </tr>\n",
|
| 543 |
+
" </tbody>\n",
|
| 544 |
+
"</table>\n",
|
| 545 |
+
"<p>57214 rows × 2 columns</p>\n",
|
| 546 |
+
"</div>"
|
| 547 |
+
],
|
| 548 |
+
"text/plain": [
|
| 549 |
+
" text label\n",
|
| 550 |
+
"0 House Dem Aide: We Didn’t Even See Comey’s Let... 1\n",
|
| 551 |
+
"1 FLYNN: Hillary Clinton, Big Woman on Campus - ... 0\n",
|
| 552 |
+
"2 Why the Truth Might Get You Fired.Why the Trut... 1\n",
|
| 553 |
+
"3 15 Civilians Killed In Single US Airstrike Hav... 1\n",
|
| 554 |
+
"4 Iranian woman jailed for fictional unpublished... 1\n",
|
| 555 |
+
"... ... ...\n",
|
| 556 |
+
"57209 CHICAGO TRUMP RALLY CANCELLED: Radicals And BL... 1\n",
|
| 557 |
+
"57210 Trump supports completion of Dakota Access Pip... 0\n",
|
| 558 |
+
"57211 Obama Can’t Stop Winning As New Jobs Report S... 1\n",
|
| 559 |
+
"57212 Turkey bank regulator dismisses 'rumors' after... 0\n",
|
| 560 |
+
"57213 California mayors ask for governor's support f... 0\n",
|
| 561 |
+
"\n",
|
| 562 |
+
"[57214 rows x 2 columns]"
|
| 563 |
+
]
|
| 564 |
+
},
|
| 565 |
+
"execution_count": 6,
|
| 566 |
+
"metadata": {},
|
| 567 |
+
"output_type": "execute_result"
|
| 568 |
+
}
|
| 569 |
+
],
|
| 570 |
+
"source": [
|
| 571 |
+
"df"
|
| 572 |
+
]
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"cell_type": "code",
|
| 576 |
+
"execution_count": 7,
|
| 577 |
+
"metadata": {
|
| 578 |
+
"id": "L0ET6Z83Pcxu"
|
| 579 |
+
},
|
| 580 |
+
"outputs": [],
|
| 581 |
+
"source": [
|
| 582 |
+
"df['labels'] = df['label']"
|
| 583 |
+
]
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"cell_type": "code",
|
| 587 |
+
"execution_count": 8,
|
| 588 |
+
"metadata": {
|
| 589 |
+
"id": "39Zv6HBJPgEt"
|
| 590 |
+
},
|
| 591 |
+
"outputs": [],
|
| 592 |
+
"source": [
|
| 593 |
+
"df = df[['text', 'labels']]"
|
| 594 |
+
]
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"cell_type": "code",
|
| 598 |
+
"execution_count": 9,
|
| 599 |
+
"metadata": {
|
| 600 |
+
"id": "bPGVPY17NI7x"
|
| 601 |
+
},
|
| 602 |
+
"outputs": [],
|
| 603 |
+
"source": [
|
| 604 |
+
"dataset = Dataset.from_pandas(df)"
|
| 605 |
+
]
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"cell_type": "code",
|
| 609 |
+
"execution_count": 10,
|
| 610 |
+
"metadata": {
|
| 611 |
+
"colab": {
|
| 612 |
+
"base_uri": "https://localhost:8080/"
|
| 613 |
+
},
|
| 614 |
+
"id": "3LTGwWrINmZq",
|
| 615 |
+
"outputId": "177d8749-68cf-4f81-a91b-1097bf155478"
|
| 616 |
+
},
|
| 617 |
+
"outputs": [
|
| 618 |
+
{
|
| 619 |
+
"data": {
|
| 620 |
+
"text/plain": [
|
| 621 |
+
"Dataset({\n",
|
| 622 |
+
" features: ['text', 'labels'],\n",
|
| 623 |
+
" num_rows: 57214\n",
|
| 624 |
+
"})"
|
| 625 |
+
]
|
| 626 |
+
},
|
| 627 |
+
"execution_count": 10,
|
| 628 |
+
"metadata": {},
|
| 629 |
+
"output_type": "execute_result"
|
| 630 |
+
}
|
| 631 |
+
],
|
| 632 |
+
"source": [
|
| 633 |
+
"dataset"
|
| 634 |
+
]
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"cell_type": "code",
|
| 638 |
+
"execution_count": 11,
|
| 639 |
+
"metadata": {
|
| 640 |
+
"colab": {
|
| 641 |
+
"base_uri": "https://localhost:8080/"
|
| 642 |
+
},
|
| 643 |
+
"id": "3DrWrMiDd7e-",
|
| 644 |
+
"outputId": "d331ebe6-5ed4-4fef-8a8d-41d25ed4b638"
|
| 645 |
+
},
|
| 646 |
+
"outputs": [],
|
| 647 |
+
"source": [
|
| 648 |
+
"import torch\n",
|
| 649 |
+
"from transformers import AutoTokenizer, AutoModel, pipeline\n",
|
| 650 |
+
"\n",
|
| 651 |
+
"model_name = 'distilbert-base-uncased-finetuned-sst-2-english'\n",
|
| 652 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
|
| 653 |
+
]
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"cell_type": "code",
|
| 657 |
+
"execution_count": 12,
|
| 658 |
+
"metadata": {
|
| 659 |
+
"id": "dRJOO2c5PT3V"
|
| 660 |
+
},
|
| 661 |
+
"outputs": [],
|
| 662 |
+
"source": [
|
| 663 |
+
"def preprocess_function(examples):\n",
|
| 664 |
+
" return tokenizer(examples[\"text\"], padding=True, truncation=True)"
|
| 665 |
+
]
|
| 666 |
+
},
|
| 667 |
+
{
|
| 668 |
+
"cell_type": "code",
|
| 669 |
+
"execution_count": 13,
|
| 670 |
+
"metadata": {
|
| 671 |
+
"colab": {
|
| 672 |
+
"base_uri": "https://localhost:8080/",
|
| 673 |
+
"height": 49,
|
| 674 |
+
"referenced_widgets": [
|
| 675 |
+
"5b49dc833234406da3da7435b9045fd2",
|
| 676 |
+
"300b70ed57dd493997afb0b3f25f4245",
|
| 677 |
+
"c03cc68b079c4e23b339e9de5ba38d29",
|
| 678 |
+
"57c3794731c84c42bb49618482b6b8cc",
|
| 679 |
+
"e306828f6d7444ddafce604e9a170467",
|
| 680 |
+
"9e11898bc51e483d91301387099368a4",
|
| 681 |
+
"a43574fa5fdf47ba9d5598b2b31f2082",
|
| 682 |
+
"482bae742d2a461cad525888e6ee8b91",
|
| 683 |
+
"e9c56275d73545a6961efe5704308ede",
|
| 684 |
+
"d604380b5e444f62ad36c4598230c561",
|
| 685 |
+
"c52ad745acb3423494b4ea5af5a934c7"
|
| 686 |
+
]
|
| 687 |
+
},
|
| 688 |
+
"id": "hCxs-HasPQ7s",
|
| 689 |
+
"outputId": "be4f8483-316c-4677-f804-12c78f358fac"
|
| 690 |
+
},
|
| 691 |
+
"outputs": [
|
| 692 |
+
{
|
| 693 |
+
"data": {
|
| 694 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 695 |
+
"model_id": "67689f0c8fb842b2969c4fc584fa3a4b",
|
| 696 |
+
"version_major": 2,
|
| 697 |
+
"version_minor": 0
|
| 698 |
+
},
|
| 699 |
+
"text/plain": [
|
| 700 |
+
" 0%| | 0/58 [00:00<?, ?ba/s]"
|
| 701 |
+
]
|
| 702 |
+
},
|
| 703 |
+
"metadata": {},
|
| 704 |
+
"output_type": "display_data"
|
| 705 |
+
}
|
| 706 |
+
],
|
| 707 |
+
"source": [
|
| 708 |
+
"dataset = dataset.map(preprocess_function, batched=True)"
|
| 709 |
+
]
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"cell_type": "code",
|
| 713 |
+
"execution_count": 14,
|
| 714 |
+
"metadata": {},
|
| 715 |
+
"outputs": [],
|
| 716 |
+
"source": [
|
| 717 |
+
"dataset_splitted = dataset.shuffle(1337).train_test_split(0.1)"
|
| 718 |
+
]
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"cell_type": "code",
|
| 722 |
+
"execution_count": 15,
|
| 723 |
+
"metadata": {},
|
| 724 |
+
"outputs": [
|
| 725 |
+
{
|
| 726 |
+
"data": {
|
| 727 |
+
"text/plain": [
|
| 728 |
+
"DatasetDict({\n",
|
| 729 |
+
" train: Dataset({\n",
|
| 730 |
+
" features: ['text', 'labels', 'input_ids', 'attention_mask'],\n",
|
| 731 |
+
" num_rows: 51492\n",
|
| 732 |
+
" })\n",
|
| 733 |
+
" test: Dataset({\n",
|
| 734 |
+
" features: ['text', 'labels', 'input_ids', 'attention_mask'],\n",
|
| 735 |
+
" num_rows: 5722\n",
|
| 736 |
+
" })\n",
|
| 737 |
+
"})"
|
| 738 |
+
]
|
| 739 |
+
},
|
| 740 |
+
"execution_count": 15,
|
| 741 |
+
"metadata": {},
|
| 742 |
+
"output_type": "execute_result"
|
| 743 |
+
}
|
| 744 |
+
],
|
| 745 |
+
"source": [
|
| 746 |
+
"dataset_splitted"
|
| 747 |
+
]
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"cell_type": "code",
|
| 751 |
+
"execution_count": 16,
|
| 752 |
+
"metadata": {
|
| 753 |
+
"id": "NyHknkwcYi6L"
|
| 754 |
+
},
|
| 755 |
+
"outputs": [],
|
| 756 |
+
"source": [
|
| 757 |
+
"from transformers import AutoModelForSequenceClassification"
|
| 758 |
+
]
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"cell_type": "code",
|
| 762 |
+
"execution_count": 23,
|
| 763 |
+
"metadata": {
|
| 764 |
+
"colab": {
|
| 765 |
+
"base_uri": "https://localhost:8080/"
|
| 766 |
+
},
|
| 767 |
+
"id": "gv_fYzmEYlUm",
|
| 768 |
+
"outputId": "7a97df03-8f7b-4d54-f8d7-6a6b71d4c8c4"
|
| 769 |
+
},
|
| 770 |
+
"outputs": [
|
| 771 |
+
{
|
| 772 |
+
"name": "stderr",
|
| 773 |
+
"output_type": "stream",
|
| 774 |
+
"text": [
|
| 775 |
+
"loading configuration file https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json from cache at C:\\Users\\andry/.cache\\huggingface\\transformers\\4e60bb8efad3d4b7dc9969bf204947c185166a0a3cf37ddb6f481a876a3777b5.9f8326d0b7697c7fd57366cdde57032f46bc10e37ae81cb7eb564d66d23ec96b\n",
|
| 776 |
+
"Model config DistilBertConfig {\n",
|
| 777 |
+
" \"_name_or_path\": \"distilbert-base-uncased-finetuned-sst-2-english\",\n",
|
| 778 |
+
" \"activation\": \"gelu\",\n",
|
| 779 |
+
" \"architectures\": [\n",
|
| 780 |
+
" \"DistilBertForSequenceClassification\"\n",
|
| 781 |
+
" ],\n",
|
| 782 |
+
" \"attention_dropout\": 0.1,\n",
|
| 783 |
+
" \"dim\": 768,\n",
|
| 784 |
+
" \"dropout\": 0.1,\n",
|
| 785 |
+
" \"finetuning_task\": \"sst-2\",\n",
|
| 786 |
+
" \"hidden_dim\": 3072,\n",
|
| 787 |
+
" \"id2label\": {\n",
|
| 788 |
+
" \"0\": \"NEGATIVE\",\n",
|
| 789 |
+
" \"1\": \"POSITIVE\"\n",
|
| 790 |
+
" },\n",
|
| 791 |
+
" \"initializer_range\": 0.02,\n",
|
| 792 |
+
" \"label2id\": {\n",
|
| 793 |
+
" \"NEGATIVE\": 0,\n",
|
| 794 |
+
" \"POSITIVE\": 1\n",
|
| 795 |
+
" },\n",
|
| 796 |
+
" \"max_position_embeddings\": 512,\n",
|
| 797 |
+
" \"model_type\": \"distilbert\",\n",
|
| 798 |
+
" \"n_heads\": 12,\n",
|
| 799 |
+
" \"n_layers\": 6,\n",
|
| 800 |
+
" \"output_past\": true,\n",
|
| 801 |
+
" \"pad_token_id\": 0,\n",
|
| 802 |
+
" \"qa_dropout\": 0.1,\n",
|
| 803 |
+
" \"seq_classif_dropout\": 0.2,\n",
|
| 804 |
+
" \"sinusoidal_pos_embds\": false,\n",
|
| 805 |
+
" \"tie_weights_\": true,\n",
|
| 806 |
+
" \"transformers_version\": \"4.17.0\",\n",
|
| 807 |
+
" \"vocab_size\": 30522\n",
|
| 808 |
+
"}\n",
|
| 809 |
+
"\n",
|
| 810 |
+
"loading weights file https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/pytorch_model.bin from cache at C:\\Users\\andry/.cache\\huggingface\\transformers\\8d04c767d9d4c14d929ce7ad8e067b80c74dbdb212ef4c3fb743db4ee109fae0.9d268a35da669ead745c44d369dc9948b408da5010c6bac414414a7e33d5748c\n",
|
| 811 |
+
"All model checkpoint weights were used when initializing DistilBertForSequenceClassification.\n",
|
| 812 |
+
"\n",
|
| 813 |
+
"All the weights of DistilBertForSequenceClassification were initialized from the model checkpoint at distilbert-base-uncased-finetuned-sst-2-english.\n",
|
| 814 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForSequenceClassification for predictions without further training.\n"
|
| 815 |
+
]
|
| 816 |
+
}
|
| 817 |
+
],
|
| 818 |
+
"source": [
|
| 819 |
+
"model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)"
|
| 820 |
+
]
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"cell_type": "code",
|
| 824 |
+
"execution_count": 24,
|
| 825 |
+
"metadata": {
|
| 826 |
+
"id": "YqcdtMXZelbm"
|
| 827 |
+
},
|
| 828 |
+
"outputs": [],
|
| 829 |
+
"source": [
|
| 830 |
+
"for name, param in model.named_parameters():\n",
|
| 831 |
+
" if name in ['classifier.weight', 'classifier.bias']:\n",
|
| 832 |
+
" param.requires_grad = True\n",
|
| 833 |
+
" else:\n",
|
| 834 |
+
" param.requires_grad = False"
|
| 835 |
+
]
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"cell_type": "code",
|
| 839 |
+
"execution_count": 25,
|
| 840 |
+
"metadata": {},
|
| 841 |
+
"outputs": [],
|
| 842 |
+
"source": [
|
| 843 |
+
"from sklearn.metrics import accuracy_score\n",
|
| 844 |
+
"\n",
|
| 845 |
+
"def compute_metrics(pred):\n",
|
| 846 |
+
" labels = pred.label_ids\n",
|
| 847 |
+
" preds = pred.predictions.argmax(-1)\n",
|
| 848 |
+
" acc = accuracy_score(labels, preds)\n",
|
| 849 |
+
" return {'accuracy': acc}"
|
| 850 |
+
]
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"cell_type": "code",
|
| 854 |
+
"execution_count": 26,
|
| 855 |
+
"metadata": {
|
| 856 |
+
"colab": {
|
| 857 |
+
"base_uri": "https://localhost:8080/",
|
| 858 |
+
"height": 608
|
| 859 |
+
},
|
| 860 |
+
"id": "DkBWiEiyIgnV",
|
| 861 |
+
"outputId": "07f58180-8005-4f7e-fd72-62a5d2c78717",
|
| 862 |
+
"scrolled": false
|
| 863 |
+
},
|
| 864 |
+
"outputs": [
|
| 865 |
+
{
|
| 866 |
+
"name": "stderr",
|
| 867 |
+
"output_type": "stream",
|
| 868 |
+
"text": [
|
| 869 |
+
"PyTorch: setting up devices\n",
|
| 870 |
+
"The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n",
|
| 871 |
+
"The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 872 |
+
"***** Running training *****\n",
|
| 873 |
+
" Num examples = 51492\n",
|
| 874 |
+
" Num Epochs = 10\n",
|
| 875 |
+
" Instantaneous batch size per device = 64\n",
|
| 876 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
| 877 |
+
" Gradient Accumulation steps = 1\n",
|
| 878 |
+
" Total optimization steps = 8050\n"
|
| 879 |
+
]
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"data": {
|
| 883 |
+
"text/html": [
|
| 884 |
+
"\n",
|
| 885 |
+
" <div>\n",
|
| 886 |
+
" \n",
|
| 887 |
+
" <progress value='8050' max='8050' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 888 |
+
" [8050/8050 1:31:55, Epoch 10/10]\n",
|
| 889 |
+
" </div>\n",
|
| 890 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 891 |
+
" <thead>\n",
|
| 892 |
+
" <tr style=\"text-align: left;\">\n",
|
| 893 |
+
" <th>Epoch</th>\n",
|
| 894 |
+
" <th>Training Loss</th>\n",
|
| 895 |
+
" <th>Validation Loss</th>\n",
|
| 896 |
+
" <th>Accuracy</th>\n",
|
| 897 |
+
" </tr>\n",
|
| 898 |
+
" </thead>\n",
|
| 899 |
+
" <tbody>\n",
|
| 900 |
+
" <tr>\n",
|
| 901 |
+
" <td>1</td>\n",
|
| 902 |
+
" <td>1.124500</td>\n",
|
| 903 |
+
" <td>0.655170</td>\n",
|
| 904 |
+
" <td>0.631423</td>\n",
|
| 905 |
+
" </tr>\n",
|
| 906 |
+
" <tr>\n",
|
| 907 |
+
" <td>2</td>\n",
|
| 908 |
+
" <td>0.635900</td>\n",
|
| 909 |
+
" <td>0.616928</td>\n",
|
| 910 |
+
" <td>0.696435</td>\n",
|
| 911 |
+
" </tr>\n",
|
| 912 |
+
" <tr>\n",
|
| 913 |
+
" <td>3</td>\n",
|
| 914 |
+
" <td>0.617400</td>\n",
|
| 915 |
+
" <td>0.592879</td>\n",
|
| 916 |
+
" <td>0.727019</td>\n",
|
| 917 |
+
" </tr>\n",
|
| 918 |
+
" <tr>\n",
|
| 919 |
+
" <td>4</td>\n",
|
| 920 |
+
" <td>0.591200</td>\n",
|
| 921 |
+
" <td>0.577941</td>\n",
|
| 922 |
+
" <td>0.734533</td>\n",
|
| 923 |
+
" </tr>\n",
|
| 924 |
+
" <tr>\n",
|
| 925 |
+
" <td>5</td>\n",
|
| 926 |
+
" <td>0.577100</td>\n",
|
| 927 |
+
" <td>0.564665</td>\n",
|
| 928 |
+
" <td>0.747466</td>\n",
|
| 929 |
+
" </tr>\n",
|
| 930 |
+
" <tr>\n",
|
| 931 |
+
" <td>6</td>\n",
|
| 932 |
+
" <td>0.569300</td>\n",
|
| 933 |
+
" <td>0.556096</td>\n",
|
| 934 |
+
" <td>0.749913</td>\n",
|
| 935 |
+
" </tr>\n",
|
| 936 |
+
" <tr>\n",
|
| 937 |
+
" <td>7</td>\n",
|
| 938 |
+
" <td>0.563200</td>\n",
|
| 939 |
+
" <td>0.551389</td>\n",
|
| 940 |
+
" <td>0.755330</td>\n",
|
| 941 |
+
" </tr>\n",
|
| 942 |
+
" <tr>\n",
|
| 943 |
+
" <td>8</td>\n",
|
| 944 |
+
" <td>0.559900</td>\n",
|
| 945 |
+
" <td>0.546756</td>\n",
|
| 946 |
+
" <td>0.754981</td>\n",
|
| 947 |
+
" </tr>\n",
|
| 948 |
+
" <tr>\n",
|
| 949 |
+
" <td>9</td>\n",
|
| 950 |
+
" <td>0.554800</td>\n",
|
| 951 |
+
" <td>0.544496</td>\n",
|
| 952 |
+
" <td>0.759000</td>\n",
|
| 953 |
+
" </tr>\n",
|
| 954 |
+
" <tr>\n",
|
| 955 |
+
" <td>10</td>\n",
|
| 956 |
+
" <td>0.554000</td>\n",
|
| 957 |
+
" <td>0.543604</td>\n",
|
| 958 |
+
" <td>0.760398</td>\n",
|
| 959 |
+
" </tr>\n",
|
| 960 |
+
" </tbody>\n",
|
| 961 |
+
"</table><p>"
|
| 962 |
+
],
|
| 963 |
+
"text/plain": [
|
| 964 |
+
"<IPython.core.display.HTML object>"
|
| 965 |
+
]
|
| 966 |
+
},
|
| 967 |
+
"metadata": {},
|
| 968 |
+
"output_type": "display_data"
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"name": "stderr",
|
| 972 |
+
"output_type": "stream",
|
| 973 |
+
"text": [
|
| 974 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 975 |
+
"***** Running Evaluation *****\n",
|
| 976 |
+
" Num examples = 5722\n",
|
| 977 |
+
" Batch size = 64\n",
|
| 978 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-805\n",
|
| 979 |
+
"Configuration saved in ./my_saved_model\\checkpoint-805\\config.json\n",
|
| 980 |
+
"Model weights saved in ./my_saved_model\\checkpoint-805\\pytorch_model.bin\n",
|
| 981 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 982 |
+
"***** Running Evaluation *****\n",
|
| 983 |
+
" Num examples = 5722\n",
|
| 984 |
+
" Batch size = 64\n",
|
| 985 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-1610\n",
|
| 986 |
+
"Configuration saved in ./my_saved_model\\checkpoint-1610\\config.json\n",
|
| 987 |
+
"Model weights saved in ./my_saved_model\\checkpoint-1610\\pytorch_model.bin\n",
|
| 988 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 989 |
+
"***** Running Evaluation *****\n",
|
| 990 |
+
" Num examples = 5722\n",
|
| 991 |
+
" Batch size = 64\n",
|
| 992 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-2415\n",
|
| 993 |
+
"Configuration saved in ./my_saved_model\\checkpoint-2415\\config.json\n",
|
| 994 |
+
"Model weights saved in ./my_saved_model\\checkpoint-2415\\pytorch_model.bin\n",
|
| 995 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-805] due to args.save_total_limit\n",
|
| 996 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 997 |
+
"***** Running Evaluation *****\n",
|
| 998 |
+
" Num examples = 5722\n",
|
| 999 |
+
" Batch size = 64\n",
|
| 1000 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-3220\n",
|
| 1001 |
+
"Configuration saved in ./my_saved_model\\checkpoint-3220\\config.json\n",
|
| 1002 |
+
"Model weights saved in ./my_saved_model\\checkpoint-3220\\pytorch_model.bin\n",
|
| 1003 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-1610] due to args.save_total_limit\n",
|
| 1004 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1005 |
+
"***** Running Evaluation *****\n",
|
| 1006 |
+
" Num examples = 5722\n",
|
| 1007 |
+
" Batch size = 64\n",
|
| 1008 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-4025\n",
|
| 1009 |
+
"Configuration saved in ./my_saved_model\\checkpoint-4025\\config.json\n",
|
| 1010 |
+
"Model weights saved in ./my_saved_model\\checkpoint-4025\\pytorch_model.bin\n",
|
| 1011 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-2415] due to args.save_total_limit\n",
|
| 1012 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1013 |
+
"***** Running Evaluation *****\n",
|
| 1014 |
+
" Num examples = 5722\n",
|
| 1015 |
+
" Batch size = 64\n",
|
| 1016 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-4830\n",
|
| 1017 |
+
"Configuration saved in ./my_saved_model\\checkpoint-4830\\config.json\n",
|
| 1018 |
+
"Model weights saved in ./my_saved_model\\checkpoint-4830\\pytorch_model.bin\n",
|
| 1019 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-3220] due to args.save_total_limit\n",
|
| 1020 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1021 |
+
"***** Running Evaluation *****\n",
|
| 1022 |
+
" Num examples = 5722\n",
|
| 1023 |
+
" Batch size = 64\n",
|
| 1024 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-5635\n",
|
| 1025 |
+
"Configuration saved in ./my_saved_model\\checkpoint-5635\\config.json\n",
|
| 1026 |
+
"Model weights saved in ./my_saved_model\\checkpoint-5635\\pytorch_model.bin\n",
|
| 1027 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-4025] due to args.save_total_limit\n",
|
| 1028 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1029 |
+
"***** Running Evaluation *****\n",
|
| 1030 |
+
" Num examples = 5722\n",
|
| 1031 |
+
" Batch size = 64\n",
|
| 1032 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-6440\n",
|
| 1033 |
+
"Configuration saved in ./my_saved_model\\checkpoint-6440\\config.json\n",
|
| 1034 |
+
"Model weights saved in ./my_saved_model\\checkpoint-6440\\pytorch_model.bin\n",
|
| 1035 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-4830] due to args.save_total_limit\n",
|
| 1036 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1037 |
+
"***** Running Evaluation *****\n",
|
| 1038 |
+
" Num examples = 5722\n",
|
| 1039 |
+
" Batch size = 64\n",
|
| 1040 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-7245\n",
|
| 1041 |
+
"Configuration saved in ./my_saved_model\\checkpoint-7245\\config.json\n",
|
| 1042 |
+
"Model weights saved in ./my_saved_model\\checkpoint-7245\\pytorch_model.bin\n",
|
| 1043 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-5635] due to args.save_total_limit\n",
|
| 1044 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 1045 |
+
"***** Running Evaluation *****\n",
|
| 1046 |
+
" Num examples = 5722\n",
|
| 1047 |
+
" Batch size = 64\n",
|
| 1048 |
+
"Saving model checkpoint to ./my_saved_model\\checkpoint-8050\n",
|
| 1049 |
+
"Configuration saved in ./my_saved_model\\checkpoint-8050\\config.json\n",
|
| 1050 |
+
"Model weights saved in ./my_saved_model\\checkpoint-8050\\pytorch_model.bin\n",
|
| 1051 |
+
"Deleting older checkpoint [my_saved_model\\checkpoint-6440] due to args.save_total_limit\n",
|
| 1052 |
+
"\n",
|
| 1053 |
+
"\n",
|
| 1054 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
| 1055 |
+
"\n",
|
| 1056 |
+
"\n",
|
| 1057 |
+
"Loading best model from ./my_saved_model\\checkpoint-8050 (score: 0.543603777885437).\n"
|
| 1058 |
+
]
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"data": {
|
| 1062 |
+
"text/plain": [
|
| 1063 |
+
"TrainOutput(global_step=8050, training_loss=0.6166538418598057, metrics={'train_runtime': 5516.6092, 'train_samples_per_second': 93.34, 'train_steps_per_second': 1.459, 'total_flos': 6.821011291594752e+16, 'train_loss': 0.6166538418598057, 'epoch': 10.0})"
|
| 1064 |
+
]
|
| 1065 |
+
},
|
| 1066 |
+
"execution_count": 26,
|
| 1067 |
+
"metadata": {},
|
| 1068 |
+
"output_type": "execute_result"
|
| 1069 |
+
}
|
| 1070 |
+
],
|
| 1071 |
+
"source": [
|
| 1072 |
+
"from transformers import Trainer, TrainingArguments\n",
|
| 1073 |
+
"\n",
|
| 1074 |
+
"trainer = Trainer(\n",
|
| 1075 |
+
" model=model, train_dataset=dataset_splitted['train'], \n",
|
| 1076 |
+
" eval_dataset=dataset_splitted['test'],\n",
|
| 1077 |
+
" compute_metrics=compute_metrics,\n",
|
| 1078 |
+
" args=TrainingArguments(\n",
|
| 1079 |
+
" load_best_model_at_end=True,\n",
|
| 1080 |
+
" output_dir=\"./my_saved_model\", overwrite_output_dir=True,\n",
|
| 1081 |
+
" num_train_epochs=10, per_device_train_batch_size=64, \n",
|
| 1082 |
+
" per_device_eval_batch_size=64,\n",
|
| 1083 |
+
" evaluation_strategy = \"epoch\",\n",
|
| 1084 |
+
" save_strategy = \"epoch\",\n",
|
| 1085 |
+
" save_steps=10_000, save_total_limit=2),\n",
|
| 1086 |
+
")\n",
|
| 1087 |
+
"\n",
|
| 1088 |
+
"trainer.train()"
|
| 1089 |
+
]
|
| 1090 |
+
}
|
| 1091 |
+
],
|
| 1092 |
+
"metadata": {
|
| 1093 |
+
"accelerator": "GPU",
|
| 1094 |
+
"colab": {
|
| 1095 |
+
"collapsed_sections": [],
|
| 1096 |
+
"name": "Копия блокнота \"ysda_2022.03.07.ipynb\"",
|
| 1097 |
+
"provenance": []
|
| 1098 |
+
},
|
| 1099 |
+
"kernelspec": {
|
| 1100 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1101 |
+
"language": "python",
|
| 1102 |
+
"name": "python3"
|
| 1103 |
+
},
|
| 1104 |
+
"language_info": {
|
| 1105 |
+
"codemirror_mode": {
|
| 1106 |
+
"name": "ipython",
|
| 1107 |
+
"version": 3
|
| 1108 |
+
},
|
| 1109 |
+
"file_extension": ".py",
|
| 1110 |
+
"mimetype": "text/x-python",
|
| 1111 |
+
"name": "python",
|
| 1112 |
+
"nbconvert_exporter": "python",
|
| 1113 |
+
"pygments_lexer": "ipython3",
|
| 1114 |
+
"version": "3.7.12"
|
| 1115 |
+
},
|
| 1116 |
+
"widgets": {
|
| 1117 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 1118 |
+
"300b70ed57dd493997afb0b3f25f4245": {
|
| 1119 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1120 |
+
"model_module_version": "1.5.0",
|
| 1121 |
+
"model_name": "HTMLModel",
|
| 1122 |
+
"state": {
|
| 1123 |
+
"_dom_classes": [],
|
| 1124 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1125 |
+
"_model_module_version": "1.5.0",
|
| 1126 |
+
"_model_name": "HTMLModel",
|
| 1127 |
+
"_view_count": null,
|
| 1128 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1129 |
+
"_view_module_version": "1.5.0",
|
| 1130 |
+
"_view_name": "HTMLView",
|
| 1131 |
+
"description": "",
|
| 1132 |
+
"description_tooltip": null,
|
| 1133 |
+
"layout": "IPY_MODEL_9e11898bc51e483d91301387099368a4",
|
| 1134 |
+
"placeholder": "",
|
| 1135 |
+
"style": "IPY_MODEL_a43574fa5fdf47ba9d5598b2b31f2082",
|
| 1136 |
+
"value": "100%"
|
| 1137 |
+
}
|
| 1138 |
+
},
|
| 1139 |
+
"482bae742d2a461cad525888e6ee8b91": {
|
| 1140 |
+
"model_module": "@jupyter-widgets/base",
|
| 1141 |
+
"model_module_version": "1.2.0",
|
| 1142 |
+
"model_name": "LayoutModel",
|
| 1143 |
+
"state": {
|
| 1144 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1145 |
+
"_model_module_version": "1.2.0",
|
| 1146 |
+
"_model_name": "LayoutModel",
|
| 1147 |
+
"_view_count": null,
|
| 1148 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1149 |
+
"_view_module_version": "1.2.0",
|
| 1150 |
+
"_view_name": "LayoutView",
|
| 1151 |
+
"align_content": null,
|
| 1152 |
+
"align_items": null,
|
| 1153 |
+
"align_self": null,
|
| 1154 |
+
"border": null,
|
| 1155 |
+
"bottom": null,
|
| 1156 |
+
"display": null,
|
| 1157 |
+
"flex": null,
|
| 1158 |
+
"flex_flow": null,
|
| 1159 |
+
"grid_area": null,
|
| 1160 |
+
"grid_auto_columns": null,
|
| 1161 |
+
"grid_auto_flow": null,
|
| 1162 |
+
"grid_auto_rows": null,
|
| 1163 |
+
"grid_column": null,
|
| 1164 |
+
"grid_gap": null,
|
| 1165 |
+
"grid_row": null,
|
| 1166 |
+
"grid_template_areas": null,
|
| 1167 |
+
"grid_template_columns": null,
|
| 1168 |
+
"grid_template_rows": null,
|
| 1169 |
+
"height": null,
|
| 1170 |
+
"justify_content": null,
|
| 1171 |
+
"justify_items": null,
|
| 1172 |
+
"left": null,
|
| 1173 |
+
"margin": null,
|
| 1174 |
+
"max_height": null,
|
| 1175 |
+
"max_width": null,
|
| 1176 |
+
"min_height": null,
|
| 1177 |
+
"min_width": null,
|
| 1178 |
+
"object_fit": null,
|
| 1179 |
+
"object_position": null,
|
| 1180 |
+
"order": null,
|
| 1181 |
+
"overflow": null,
|
| 1182 |
+
"overflow_x": null,
|
| 1183 |
+
"overflow_y": null,
|
| 1184 |
+
"padding": null,
|
| 1185 |
+
"right": null,
|
| 1186 |
+
"top": null,
|
| 1187 |
+
"visibility": null,
|
| 1188 |
+
"width": null
|
| 1189 |
+
}
|
| 1190 |
+
},
|
| 1191 |
+
"57c3794731c84c42bb49618482b6b8cc": {
|
| 1192 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1193 |
+
"model_module_version": "1.5.0",
|
| 1194 |
+
"model_name": "HTMLModel",
|
| 1195 |
+
"state": {
|
| 1196 |
+
"_dom_classes": [],
|
| 1197 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1198 |
+
"_model_module_version": "1.5.0",
|
| 1199 |
+
"_model_name": "HTMLModel",
|
| 1200 |
+
"_view_count": null,
|
| 1201 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1202 |
+
"_view_module_version": "1.5.0",
|
| 1203 |
+
"_view_name": "HTMLView",
|
| 1204 |
+
"description": "",
|
| 1205 |
+
"description_tooltip": null,
|
| 1206 |
+
"layout": "IPY_MODEL_d604380b5e444f62ad36c4598230c561",
|
| 1207 |
+
"placeholder": "",
|
| 1208 |
+
"style": "IPY_MODEL_c52ad745acb3423494b4ea5af5a934c7",
|
| 1209 |
+
"value": " 58/58 [02:02<00:00, 1.83s/ba]"
|
| 1210 |
+
}
|
| 1211 |
+
},
|
| 1212 |
+
"5b49dc833234406da3da7435b9045fd2": {
|
| 1213 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1214 |
+
"model_module_version": "1.5.0",
|
| 1215 |
+
"model_name": "HBoxModel",
|
| 1216 |
+
"state": {
|
| 1217 |
+
"_dom_classes": [],
|
| 1218 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1219 |
+
"_model_module_version": "1.5.0",
|
| 1220 |
+
"_model_name": "HBoxModel",
|
| 1221 |
+
"_view_count": null,
|
| 1222 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1223 |
+
"_view_module_version": "1.5.0",
|
| 1224 |
+
"_view_name": "HBoxView",
|
| 1225 |
+
"box_style": "",
|
| 1226 |
+
"children": [
|
| 1227 |
+
"IPY_MODEL_300b70ed57dd493997afb0b3f25f4245",
|
| 1228 |
+
"IPY_MODEL_c03cc68b079c4e23b339e9de5ba38d29",
|
| 1229 |
+
"IPY_MODEL_57c3794731c84c42bb49618482b6b8cc"
|
| 1230 |
+
],
|
| 1231 |
+
"layout": "IPY_MODEL_e306828f6d7444ddafce604e9a170467"
|
| 1232 |
+
}
|
| 1233 |
+
},
|
| 1234 |
+
"9e11898bc51e483d91301387099368a4": {
|
| 1235 |
+
"model_module": "@jupyter-widgets/base",
|
| 1236 |
+
"model_module_version": "1.2.0",
|
| 1237 |
+
"model_name": "LayoutModel",
|
| 1238 |
+
"state": {
|
| 1239 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1240 |
+
"_model_module_version": "1.2.0",
|
| 1241 |
+
"_model_name": "LayoutModel",
|
| 1242 |
+
"_view_count": null,
|
| 1243 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1244 |
+
"_view_module_version": "1.2.0",
|
| 1245 |
+
"_view_name": "LayoutView",
|
| 1246 |
+
"align_content": null,
|
| 1247 |
+
"align_items": null,
|
| 1248 |
+
"align_self": null,
|
| 1249 |
+
"border": null,
|
| 1250 |
+
"bottom": null,
|
| 1251 |
+
"display": null,
|
| 1252 |
+
"flex": null,
|
| 1253 |
+
"flex_flow": null,
|
| 1254 |
+
"grid_area": null,
|
| 1255 |
+
"grid_auto_columns": null,
|
| 1256 |
+
"grid_auto_flow": null,
|
| 1257 |
+
"grid_auto_rows": null,
|
| 1258 |
+
"grid_column": null,
|
| 1259 |
+
"grid_gap": null,
|
| 1260 |
+
"grid_row": null,
|
| 1261 |
+
"grid_template_areas": null,
|
| 1262 |
+
"grid_template_columns": null,
|
| 1263 |
+
"grid_template_rows": null,
|
| 1264 |
+
"height": null,
|
| 1265 |
+
"justify_content": null,
|
| 1266 |
+
"justify_items": null,
|
| 1267 |
+
"left": null,
|
| 1268 |
+
"margin": null,
|
| 1269 |
+
"max_height": null,
|
| 1270 |
+
"max_width": null,
|
| 1271 |
+
"min_height": null,
|
| 1272 |
+
"min_width": null,
|
| 1273 |
+
"object_fit": null,
|
| 1274 |
+
"object_position": null,
|
| 1275 |
+
"order": null,
|
| 1276 |
+
"overflow": null,
|
| 1277 |
+
"overflow_x": null,
|
| 1278 |
+
"overflow_y": null,
|
| 1279 |
+
"padding": null,
|
| 1280 |
+
"right": null,
|
| 1281 |
+
"top": null,
|
| 1282 |
+
"visibility": null,
|
| 1283 |
+
"width": null
|
| 1284 |
+
}
|
| 1285 |
+
},
|
| 1286 |
+
"a43574fa5fdf47ba9d5598b2b31f2082": {
|
| 1287 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1288 |
+
"model_module_version": "1.5.0",
|
| 1289 |
+
"model_name": "DescriptionStyleModel",
|
| 1290 |
+
"state": {
|
| 1291 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1292 |
+
"_model_module_version": "1.5.0",
|
| 1293 |
+
"_model_name": "DescriptionStyleModel",
|
| 1294 |
+
"_view_count": null,
|
| 1295 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1296 |
+
"_view_module_version": "1.2.0",
|
| 1297 |
+
"_view_name": "StyleView",
|
| 1298 |
+
"description_width": ""
|
| 1299 |
+
}
|
| 1300 |
+
},
|
| 1301 |
+
"c03cc68b079c4e23b339e9de5ba38d29": {
|
| 1302 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1303 |
+
"model_module_version": "1.5.0",
|
| 1304 |
+
"model_name": "FloatProgressModel",
|
| 1305 |
+
"state": {
|
| 1306 |
+
"_dom_classes": [],
|
| 1307 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1308 |
+
"_model_module_version": "1.5.0",
|
| 1309 |
+
"_model_name": "FloatProgressModel",
|
| 1310 |
+
"_view_count": null,
|
| 1311 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1312 |
+
"_view_module_version": "1.5.0",
|
| 1313 |
+
"_view_name": "ProgressView",
|
| 1314 |
+
"bar_style": "success",
|
| 1315 |
+
"description": "",
|
| 1316 |
+
"description_tooltip": null,
|
| 1317 |
+
"layout": "IPY_MODEL_482bae742d2a461cad525888e6ee8b91",
|
| 1318 |
+
"max": 58,
|
| 1319 |
+
"min": 0,
|
| 1320 |
+
"orientation": "horizontal",
|
| 1321 |
+
"style": "IPY_MODEL_e9c56275d73545a6961efe5704308ede",
|
| 1322 |
+
"value": 58
|
| 1323 |
+
}
|
| 1324 |
+
},
|
| 1325 |
+
"c52ad745acb3423494b4ea5af5a934c7": {
|
| 1326 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1327 |
+
"model_module_version": "1.5.0",
|
| 1328 |
+
"model_name": "DescriptionStyleModel",
|
| 1329 |
+
"state": {
|
| 1330 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1331 |
+
"_model_module_version": "1.5.0",
|
| 1332 |
+
"_model_name": "DescriptionStyleModel",
|
| 1333 |
+
"_view_count": null,
|
| 1334 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1335 |
+
"_view_module_version": "1.2.0",
|
| 1336 |
+
"_view_name": "StyleView",
|
| 1337 |
+
"description_width": ""
|
| 1338 |
+
}
|
| 1339 |
+
},
|
| 1340 |
+
"d604380b5e444f62ad36c4598230c561": {
|
| 1341 |
+
"model_module": "@jupyter-widgets/base",
|
| 1342 |
+
"model_module_version": "1.2.0",
|
| 1343 |
+
"model_name": "LayoutModel",
|
| 1344 |
+
"state": {
|
| 1345 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1346 |
+
"_model_module_version": "1.2.0",
|
| 1347 |
+
"_model_name": "LayoutModel",
|
| 1348 |
+
"_view_count": null,
|
| 1349 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1350 |
+
"_view_module_version": "1.2.0",
|
| 1351 |
+
"_view_name": "LayoutView",
|
| 1352 |
+
"align_content": null,
|
| 1353 |
+
"align_items": null,
|
| 1354 |
+
"align_self": null,
|
| 1355 |
+
"border": null,
|
| 1356 |
+
"bottom": null,
|
| 1357 |
+
"display": null,
|
| 1358 |
+
"flex": null,
|
| 1359 |
+
"flex_flow": null,
|
| 1360 |
+
"grid_area": null,
|
| 1361 |
+
"grid_auto_columns": null,
|
| 1362 |
+
"grid_auto_flow": null,
|
| 1363 |
+
"grid_auto_rows": null,
|
| 1364 |
+
"grid_column": null,
|
| 1365 |
+
"grid_gap": null,
|
| 1366 |
+
"grid_row": null,
|
| 1367 |
+
"grid_template_areas": null,
|
| 1368 |
+
"grid_template_columns": null,
|
| 1369 |
+
"grid_template_rows": null,
|
| 1370 |
+
"height": null,
|
| 1371 |
+
"justify_content": null,
|
| 1372 |
+
"justify_items": null,
|
| 1373 |
+
"left": null,
|
| 1374 |
+
"margin": null,
|
| 1375 |
+
"max_height": null,
|
| 1376 |
+
"max_width": null,
|
| 1377 |
+
"min_height": null,
|
| 1378 |
+
"min_width": null,
|
| 1379 |
+
"object_fit": null,
|
| 1380 |
+
"object_position": null,
|
| 1381 |
+
"order": null,
|
| 1382 |
+
"overflow": null,
|
| 1383 |
+
"overflow_x": null,
|
| 1384 |
+
"overflow_y": null,
|
| 1385 |
+
"padding": null,
|
| 1386 |
+
"right": null,
|
| 1387 |
+
"top": null,
|
| 1388 |
+
"visibility": null,
|
| 1389 |
+
"width": null
|
| 1390 |
+
}
|
| 1391 |
+
},
|
| 1392 |
+
"e306828f6d7444ddafce604e9a170467": {
|
| 1393 |
+
"model_module": "@jupyter-widgets/base",
|
| 1394 |
+
"model_module_version": "1.2.0",
|
| 1395 |
+
"model_name": "LayoutModel",
|
| 1396 |
+
"state": {
|
| 1397 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1398 |
+
"_model_module_version": "1.2.0",
|
| 1399 |
+
"_model_name": "LayoutModel",
|
| 1400 |
+
"_view_count": null,
|
| 1401 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1402 |
+
"_view_module_version": "1.2.0",
|
| 1403 |
+
"_view_name": "LayoutView",
|
| 1404 |
+
"align_content": null,
|
| 1405 |
+
"align_items": null,
|
| 1406 |
+
"align_self": null,
|
| 1407 |
+
"border": null,
|
| 1408 |
+
"bottom": null,
|
| 1409 |
+
"display": null,
|
| 1410 |
+
"flex": null,
|
| 1411 |
+
"flex_flow": null,
|
| 1412 |
+
"grid_area": null,
|
| 1413 |
+
"grid_auto_columns": null,
|
| 1414 |
+
"grid_auto_flow": null,
|
| 1415 |
+
"grid_auto_rows": null,
|
| 1416 |
+
"grid_column": null,
|
| 1417 |
+
"grid_gap": null,
|
| 1418 |
+
"grid_row": null,
|
| 1419 |
+
"grid_template_areas": null,
|
| 1420 |
+
"grid_template_columns": null,
|
| 1421 |
+
"grid_template_rows": null,
|
| 1422 |
+
"height": null,
|
| 1423 |
+
"justify_content": null,
|
| 1424 |
+
"justify_items": null,
|
| 1425 |
+
"left": null,
|
| 1426 |
+
"margin": null,
|
| 1427 |
+
"max_height": null,
|
| 1428 |
+
"max_width": null,
|
| 1429 |
+
"min_height": null,
|
| 1430 |
+
"min_width": null,
|
| 1431 |
+
"object_fit": null,
|
| 1432 |
+
"object_position": null,
|
| 1433 |
+
"order": null,
|
| 1434 |
+
"overflow": null,
|
| 1435 |
+
"overflow_x": null,
|
| 1436 |
+
"overflow_y": null,
|
| 1437 |
+
"padding": null,
|
| 1438 |
+
"right": null,
|
| 1439 |
+
"top": null,
|
| 1440 |
+
"visibility": null,
|
| 1441 |
+
"width": null
|
| 1442 |
+
}
|
| 1443 |
+
},
|
| 1444 |
+
"e9c56275d73545a6961efe5704308ede": {
|
| 1445 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1446 |
+
"model_module_version": "1.5.0",
|
| 1447 |
+
"model_name": "ProgressStyleModel",
|
| 1448 |
+
"state": {
|
| 1449 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1450 |
+
"_model_module_version": "1.5.0",
|
| 1451 |
+
"_model_name": "ProgressStyleModel",
|
| 1452 |
+
"_view_count": null,
|
| 1453 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1454 |
+
"_view_module_version": "1.2.0",
|
| 1455 |
+
"_view_name": "StyleView",
|
| 1456 |
+
"bar_color": null,
|
| 1457 |
+
"description_width": ""
|
| 1458 |
+
}
|
| 1459 |
+
}
|
| 1460 |
+
}
|
| 1461 |
+
}
|
| 1462 |
+
},
|
| 1463 |
+
"nbformat": 4,
|
| 1464 |
+
"nbformat_minor": 1
|
| 1465 |
+
}
|