mohit-raghavendra commited on
Commit
bbd7b76
·
1 Parent(s): aa4608e

Initial upload

Browse files
Files changed (8) hide show
  1. README.md +1 -12
  2. app.py +76 -0
  3. config.yml +13 -0
  4. gt-policy-bot.yml +28 -0
  5. llm_client.py +41 -0
  6. pinecone_index.py +109 -0
  7. requirements.txt +11 -0
  8. vectorise.py +69 -0
README.md CHANGED
@@ -1,12 +1 @@
1
- ---
2
- title: Gt Policy Bot
3
- emoji: 📊
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.1.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # gt-policy-bot
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+
3
+ import gradio as gr
4
+
5
+ from typing import List
6
+
7
+ from llm_client import PalmClient
8
+ from pinecone_index import PinceconeIndex
9
+
10
+ SYSTEM_MESSAGE = 'Give a precise answer to the question based on only the \
11
+ context and evidence and do not be verbose.'
12
+ TOP_K = 2
13
+
14
+
15
+ def format_prompt(question: str, evidence: List[str]):
16
+ evidence_string = ''
17
+ for i, ev in enumerate(evidence):
18
+ evidence_string.join(f'\n Evidence {i+1}: {ev}')
19
+
20
+ content = f"{SYSTEM_MESSAGE} \
21
+ \n ### Question:{question} \
22
+ \n ### Evidence: {evidence_string} \
23
+ \n ### Response:"
24
+
25
+ return content
26
+
27
+
28
+ if __name__ == '__main__':
29
+
30
+ config_path = 'config.yml'
31
+ with open('config.yml', 'r') as file:
32
+ config = yaml.safe_load(file)
33
+
34
+ print(config)
35
+
36
+ data_path = config['paths']['data_path']
37
+ project = config['paths']['project']
38
+
39
+ index_name = config['pinecone']['index-name']
40
+ embedding_model = config['sentence-transformers']['model-name']
41
+ embedding_dimension = config['sentence-transformers'][
42
+ 'embedding-dimension']
43
+
44
+ index = PinceconeIndex(index_name, embedding_model)
45
+ index.connect_index(embedding_dimension, False)
46
+
47
+ palm_client = PalmClient()
48
+
49
+ def get_answer(question: str):
50
+ evidence = index.query(question, top_k=TOP_K)
51
+ prompt_with_evidence = format_prompt(question, evidence)
52
+ print(prompt_with_evidence)
53
+ response = palm_client.generate_text(prompt_with_evidence)
54
+ final_output = [response] + evidence
55
+
56
+ return final_output
57
+
58
+ context_outputs = [gr.Textbox(label=f'Evidence {i+1}')
59
+ for i in range(TOP_K)]
60
+ result_output = [gr.Textbox(label='Answer')]
61
+
62
+ gradio_outputs = result_output + context_outputs
63
+ gradio_inputs = gr.Textbox(placeholder="Enter your question...")
64
+
65
+ demo = gr.Interface(
66
+ fn=get_answer,
67
+ inputs=gradio_inputs,
68
+ # outputs=[gr.Textbox(label=f'Document {i+1}') for i in range(TOP_K)],
69
+ outputs=gradio_outputs,
70
+ title="GT Student Code of Conduct Bot",
71
+ description="Get LLM-powered answers to questions about the \
72
+ Georgia Tech Student Code of Conduct. The evidences are exerpts\
73
+ from the Code of Conduct."
74
+ )
75
+
76
+ demo.launch()
config.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ paths:
2
+ project: 'code_of_conduct_1'
3
+ data_path: './data/code_of_conduct/'
4
+ chunking: 'manual'
5
+ auto_chunk_file: './data/code_of_conduct/code_of_conduct.csv'
6
+ manual_chunk_file: './data/code_of_conduct/code_of_conduct_manual.csv'
7
+
8
+ pinecone:
9
+ index-name: gt-code-of-conduct
10
+
11
+ sentence-transformers:
12
+ model-name: thenlper/gte-base
13
+ embedding-dimension: 768
gt-policy-bot.yml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: gtpb
2
+ channels:
3
+ - defaults
4
+ dependencies:
5
+ - matplotlib
6
+ - numpy
7
+ - imageio
8
+ - scikit-learn
9
+ - notebook
10
+ - pandas
11
+ - scipy
12
+ - ipywidgets
13
+ - statsmodels
14
+ - jupyterlab
15
+ - plotly
16
+ - pip
17
+ - tqdm
18
+ - pip:
19
+ - kaleido
20
+ - colab_ssh
21
+ - gradio
22
+ - faiss-cpu
23
+ - pinecone-client
24
+ - pdfminer-six
25
+ - sentence-transformers
26
+ - torch
27
+ - langchain
28
+ - python-dotenv
llm_client.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import google.generativeai as palm
4
+
5
+
6
+ class PalmClient:
7
+ def __init__(self):
8
+ self.connect_client()
9
+
10
+ def connect_client(self):
11
+ if (not os.getenv('GOOGLE_PALM_KEY')):
12
+ raise Exception('Please set your Google MakerSuite API key')
13
+
14
+ api_key = os.getenv('GOOGLE_PALM_KEY')
15
+ palm.configure(api_key=api_key)
16
+
17
+ safety_overrides = [
18
+ {"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4},
19
+ {"category": "HARM_CATEGORY_TOXICITY", "threshold": 4},
20
+ {"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4},
21
+ {"category": "HARM_CATEGORY_SEXUAL", "threshold": 4},
22
+ {"category": "HARM_CATEGORY_MEDICAL", "threshold": 4},
23
+ {"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4}
24
+ ]
25
+
26
+ defaults = {
27
+ 'model': 'models/text-bison-001',
28
+ 'temperature': 0.7,
29
+ 'candidate_count': 1,
30
+ 'top_k': 40,
31
+ 'top_p': 0.95,
32
+ 'max_output_tokens': 1024,
33
+ 'stop_sequences': [],
34
+ 'safety_settings': safety_overrides,
35
+ }
36
+
37
+ self.defaults = defaults
38
+
39
+ def generate_text(self, prompt: str) -> str:
40
+ response = palm.generate_text(**self.defaults, prompt=prompt)
41
+ return response.candidates[0]['output']
pinecone_index.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pinecone
3
+ import time
4
+ import yaml
5
+
6
+ import pandas as pd
7
+
8
+ from langchain.document_loaders import DataFrameLoader
9
+ from langchain.embeddings import HuggingFaceEmbeddings
10
+ from langchain.vectorstores.pinecone import Pinecone
11
+ from typing import List
12
+
13
+ from dotenv import load_dotenv
14
+ from pathlib import Path
15
+
16
+
17
+ class PinceconeIndex:
18
+ def __init__(self, index_name: str, model_name: str):
19
+ self.index_name = index_name
20
+ self._embeddingModel = HuggingFaceEmbeddings(model_name=model_name)
21
+
22
+ def connect_index(self, embedding_dimension: int,
23
+ delete_existing: bool = False):
24
+ index_name = self.index_name
25
+
26
+ # load pinecone env variables within Google Colab
27
+ if (not os.getenv('PINECONE_KEY')) or (not os.getenv('PINECONE_ENV')):
28
+ dotenv_path = Path('/content/gt-policy-bot/config.env')
29
+ load_dotenv(dotenv_path=dotenv_path)
30
+
31
+ pinecone.init(
32
+ api_key=os.getenv('PINECONE_KEY'),
33
+ environment=os.getenv('PINECONE_ENV'),
34
+ )
35
+
36
+ if index_name in pinecone.list_indexes() and delete_existing:
37
+ pinecone.delete_index(index_name)
38
+
39
+ if index_name not in pinecone.list_indexes():
40
+ pinecone.create_index(index_name, dimension=embedding_dimension)
41
+
42
+ index = pinecone.Index(index_name)
43
+
44
+ pinecone.describe_index(index_name)
45
+ self._index = index
46
+
47
+ def upsert_docs(self, df: pd.DataFrame, text_col: str):
48
+ loader = DataFrameLoader(df, page_content_column=text_col)
49
+ docs = loader.load()
50
+ Pinecone.from_documents(docs, self._embeddingModel,
51
+ index_name=self.index_name)
52
+
53
+ def get_embedding_model(self):
54
+ return self._embeddingModel
55
+
56
+ def get_index_name(self):
57
+ return self.index_name
58
+
59
+ def query(self, query: str, top_k: int = 5) -> List[str]:
60
+ docsearch = Pinecone.from_existing_index(self.index_name,
61
+ self._embeddingModel)
62
+ res = docsearch.similarity_search(query, k=top_k)
63
+
64
+ return [doc.page_content for doc in res]
65
+
66
+
67
+ if __name__ == '__main__':
68
+ config_path = 'config.yml'
69
+ with open('config.yml', 'r') as file:
70
+ config = yaml.safe_load(file)
71
+
72
+ print(config)
73
+
74
+ data_path = config['paths']['data_path']
75
+ project = config['paths']['project']
76
+ format = '.csv'
77
+
78
+ index_name = config['pinecone']['index-name']
79
+ embedding_model = config['sentence-transformers'][
80
+ 'model-name']
81
+ embedding_dimension = config['sentence-transformers'][
82
+ 'embedding-dimension']
83
+ delete_existing = True
84
+
85
+ if config['paths']['chunking'] == 'manual':
86
+ print("Using manual chunking")
87
+ file_path_embedding = config['paths']['manual_chunk_file']
88
+ df = pd.read_csv(file_path_embedding, header=None, names=['chunks'])
89
+ else:
90
+ print("Using automatic chunking")
91
+ file_path_embedding = config['paths']['auto_chunk_file']
92
+ df = pd.read_csv(file_path_embedding, index_col=0)
93
+
94
+ print(df)
95
+ start_time = time.time()
96
+ index = PinceconeIndex(index_name, embedding_model)
97
+ index.connect_index(embedding_dimension, delete_existing)
98
+ index.upsert_docs(df, 'chunks')
99
+ end_time = time.time()
100
+ print(f'Indexing took {end_time - start_time} seconds')
101
+
102
+ index = PinceconeIndex(index_name, embedding_model)
103
+ index.connect_index(embedding_dimension, delete_existing=False)
104
+
105
+ query = "When was the student code of conduct last revised?"
106
+ res = index.query(query, top_k=5)
107
+
108
+ # assert len(res) == 5
109
+ print(res)
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pandas
2
+ pinecone-client
3
+ sentence-transformers
4
+ torch
5
+ tqdm
6
+ pdfminer-six
7
+ langchain
8
+ gradio
9
+ python-dotenv
10
+ faiss-cpu
11
+ google-generativeai
vectorise.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tqdm
2
+ import yaml
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+
7
+ from sentence_transformers import SentenceTransformer
8
+
9
+ BATCH_SIZE = 2
10
+
11
+
12
+ class Vectorizer:
13
+ def __init__(self, model_name: str):
14
+ self.model_name = model_name
15
+ self.model = SentenceTransformer(model_name)
16
+ self.batch_size = BATCH_SIZE
17
+
18
+ def get_query_embedding(self, query: str) -> np.ndarray:
19
+ return self.model.encode(query)
20
+
21
+ def get_embeddings(self, df: pd.DataFrame, data_col: str):
22
+ docs = df[data_col]
23
+ num_docs = len(docs)
24
+ embeddings = []
25
+ for i in tqdm.tqdm(range(0, num_docs, self.batch_size)):
26
+ docs_batch = docs[i: i + self.batch_size].to_list()
27
+ vectors_batch = self.model.encode(docs_batch).tolist()
28
+ embeddings.append(vectors_batch)
29
+
30
+ embeddings_flattened = [embedding for batch in embeddings for embedding in batch]
31
+
32
+ assert len(embeddings_flattened) == num_docs
33
+ return embeddings_flattened
34
+
35
+ def embed_docs(self, df: pd.DataFrame, data_col: str) -> pd.DataFrame:
36
+ embeddings = self.get_embeddings(df, data_col)
37
+ df['embeddings'] = embeddings
38
+
39
+ return df
40
+
41
+
42
+ def run_vectorizer(configFilePath="config.yml"):
43
+ with open(configFilePath, 'r') as file:
44
+ config = yaml.safe_load(file)
45
+ print("Config File Loaded ...")
46
+ print(config)
47
+
48
+ data_path = config['paths']['data_path']
49
+ project = config['paths']['project']
50
+ format = '.csv'
51
+
52
+ data_col_name = 'chunks'
53
+ df = pd.read_csv(data_path + project + format)
54
+
55
+ vectorizer = Vectorizer(config['sentence-transformers']['model-name'])
56
+ df_embeddings = vectorizer.embed_docs(df, data_col_name)
57
+ print("Creation of embedding completed ...")
58
+ print(df_embeddings.head())
59
+
60
+ file_path_embedding = data_path + project + '_embedding' + format
61
+ df_embeddings.to_csv(file_path_embedding)
62
+
63
+ df_read = pd.read_csv(file_path_embedding, index_col=0)
64
+ assert len(df_read) == len(df_embeddings)
65
+ print(file_path_embedding + "created ...")
66
+
67
+
68
+ if __name__ == "__main__":
69
+ run_vectorizer()