gt-policy-bot / pinecone_index.py
mohit-raghavendra's picture
Upload 5 files
617c511
import os
import pinecone
import time
import yaml
import pandas as pd
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores.pinecone import Pinecone
from typing import List
from dotenv import load_dotenv
from pathlib import Path
class PinceconeIndex:
def __init__(self, index_name: str, model_name: str):
self.index_name = index_name
self._embeddingModel = HuggingFaceEmbeddings(model_name=model_name)
def connect_index(self, embedding_dimension: int, delete_existing: bool = False):
index_name = self.index_name
# load pinecone env variables within Google Colab
if (not os.getenv("PINECONE_KEY")) or (not os.getenv("PINECONE_ENV")):
dotenv_path = Path("/content/gt-policy-bot/config.env")
load_dotenv(dotenv_path=dotenv_path)
pinecone.init(
api_key=os.getenv("PINECONE_KEY"),
environment=os.getenv("PINECONE_ENV"),
)
if index_name in pinecone.list_indexes() and delete_existing:
pinecone.delete_index(index_name)
if index_name not in pinecone.list_indexes():
pinecone.create_index(index_name, dimension=embedding_dimension)
index = pinecone.Index(index_name)
pinecone.describe_index(index_name)
self._index = index
def upsert_docs(self, df: pd.DataFrame, text_col: str):
loader = DataFrameLoader(df, page_content_column=text_col)
docs = loader.load()
Pinecone.from_documents(docs, self._embeddingModel, index_name=self.index_name)
def get_embedding_model(self):
return self._embeddingModel
def get_index_name(self):
return self.index_name
def query(self, query: str, top_k: int = 5) -> List[str]:
docsearch = Pinecone.from_existing_index(self.index_name, self._embeddingModel)
res = docsearch.similarity_search(query, k=top_k)
return [doc.page_content for doc in res]
if __name__ == "__main__":
config_path = "config.yml"
with open("config.yml", "r") as file:
config = yaml.safe_load(file)
print(config)
data_path = config["paths"]["data_path"]
project = config["paths"]["project"]
format = ".csv"
index_name = config["pinecone"]["index-name"]
embedding_model = config["sentence-transformers"]["model-name"]
embedding_dimension = config["sentence-transformers"]["embedding-dimension"]
delete_existing = True
if config["paths"]["chunking"] == "manual":
print("Using manual chunking")
file_path_embedding = config["paths"]["manual_chunk_file"]
df = pd.read_csv(file_path_embedding, header=None, names=["chunks"])
else:
print("Using automatic chunking")
file_path_embedding = config["paths"]["auto_chunk_file"]
df = pd.read_csv(file_path_embedding, index_col=0)
print(df)
start_time = time.time()
index = PinceconeIndex(index_name, embedding_model)
index.connect_index(embedding_dimension, delete_existing)
index.upsert_docs(df, "chunks")
end_time = time.time()
print(f"Indexing took {end_time - start_time} seconds")
index = PinceconeIndex(index_name, embedding_model)
index.connect_index(embedding_dimension, delete_existing=False)
query = "When was the student code of conduct last revised?"
res = index.query(query, top_k=5)
# assert len(res) == 5
print(res)