import torch import pandas as pd from sentence_transformers import SentenceTransformer, util import gradio as gr model = SentenceTransformer("distilbert-base-multilingual-cased") modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") df = pd.read_csv("cleaned1.csv") df2 = pd.read_csv("cleaned2.csv") df3 = pd.read_csv("cleaned3.csv") embeddings = torch.load("embeddings1_1.pt") embeddings2 = torch.load("embeddings2_1.pt") embeddings3 = torch.load("embeddings3_1.pt") embeddingsa = torch.load("embeddings1.pt") embeddingsa2 = torch.load("embeddings2.pt") embeddingsa3 = torch.load("embeddings3.pt") # Pre-extract DataFrame columns to avoid repeated iloc calls df_questions = df["question"].values df_links = df["link"].values df2_questions = df2["question"].values df2_links = df2["link"].values df3_questions = df3["question"].values df3_links = df3["url"].values def predict(text): if not text or text.strip() == "": return "No query provided" query_embedding = model.encode(text, convert_to_tensor=True) query_embeddinga = modela.encode(text, convert_to_tensor=True) all_sim_scores1 = [] all_sim_scores2 = [] all_sim_scores3 = [] # Compute similarity scores sim_scores1 = util.pytorch_cos_sim(query_embedding, embeddings)[0] sim_scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0] sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0] all_sim_scores1.append(sim_scores1) all_sim_scores2.append(sim_scores2) all_sim_scores3.append(sim_scores3) sim_scores1a = util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0] sim_scores2a = util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0] sim_scores3a = util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0] all_sim_scores1.append(sim_scores1a) all_sim_scores2.append(sim_scores2a) all_sim_scores3.append(sim_scores3a) sim_scores1 = torch.stack(all_sim_scores1).mean(dim=0) sim_scores2 = torch.stack(all_sim_scores2).mean(dim=0) sim_scores3 = torch.stack(all_sim_scores3).mean(dim=0) # Get top 3 values and indices in one call top3_scores1, top3_idx1 = sim_scores1.topk(3) top3_scores2, top3_idx2 = sim_scores2.topk(3) top3_scores3, top3_idx3 = sim_scores3.topk(3) # Convert to CPU once top3_idx1_cpu = top3_idx1.cpu().numpy() top3_idx2_cpu = top3_idx2.cpu().numpy() top3_idx3_cpu = top3_idx3.cpu().numpy() top3_scores1_cpu = top3_scores1.cpu().numpy() top3_scores2_cpu = top3_scores2.cpu().numpy() top3_scores3_cpu = top3_scores3.cpu().numpy() # Prepare results using pre-extracted arrays results = { "top2": [ { "question": df2_questions[idx], "link": df2_links[idx], "score": float(score) } for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu) ], "top3": [ { "question": df3_questions[idx], "link": df3_links[idx], "score": float(score) } for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu) ], "top1": [ { "question": df_questions[idx], "link": df_links[idx], "score": float(score) } for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu) ], } return results # Match the EXACT structure of your working translation app title = "Search CSV" iface = gr.Interface( fn=predict, # Changed from search_fatwa to predict inputs=[gr.Textbox(label="text", lines=3)], outputs='json', title=title, ) iface.launch()