mohbay commited on
Commit
a03743f
·
verified ·
1 Parent(s): 4ababe4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -11
app.py CHANGED
@@ -121,9 +121,14 @@ df = pd.read_csv("cleaned1.csv")
121
  df2 = pd.read_csv("cleaned2.csv")
122
  df3 = pd.read_csv("cleaned3.csv")
123
 
124
- embeddings = torch.load("embeddings1.pt")
125
- embeddings2 = torch.load("embeddings2.pt")
126
- embeddings3 = torch.load("embeddings3.pt")
 
 
 
 
 
127
  # Pre-extract DataFrame columns to avoid repeated iloc calls
128
  df_questions = df["question"].values
129
  df_links = df["link"].values
@@ -156,14 +161,7 @@ def predict(text):
156
  top3_scores3_cpu = top3_scores3.cpu().numpy()
157
  # Prepare results using pre-extracted arrays
158
  results = {
159
- "top1": [
160
- {
161
- "question": df_questions[idx],
162
- "link": df_links[idx],
163
- "score": float(score)
164
- }
165
- for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
166
- ],
167
  "top2": [
168
  {
169
  "question": df2_questions[idx],
@@ -180,6 +178,14 @@ def predict(text):
180
  }
181
  for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
182
  ],
 
 
 
 
 
 
 
 
183
  }
184
 
185
  return results
 
121
  df2 = pd.read_csv("cleaned2.csv")
122
  df3 = pd.read_csv("cleaned3.csv")
123
 
124
+ embeddings = torch.load("embeddings1_1.pt")
125
+ embeddings2 = torch.load("embeddings2_1.pt")
126
+ embeddings3 = torch.load("embeddings3_1.pt")
127
+
128
+ # embeddings = torch.load("embeddings1.pt")
129
+ # embeddings2 = torch.load("embeddings2.pt")
130
+ # embeddings3 = torch.load("embeddings3.pt")
131
+
132
  # Pre-extract DataFrame columns to avoid repeated iloc calls
133
  df_questions = df["question"].values
134
  df_links = df["link"].values
 
161
  top3_scores3_cpu = top3_scores3.cpu().numpy()
162
  # Prepare results using pre-extracted arrays
163
  results = {
164
+
 
 
 
 
 
 
 
165
  "top2": [
166
  {
167
  "question": df2_questions[idx],
 
178
  }
179
  for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
180
  ],
181
+ "top1": [
182
+ {
183
+ "question": df_questions[idx],
184
+ "link": df_links[idx],
185
+ "score": float(score)
186
+ }
187
+ for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
188
+ ],
189
  }
190
 
191
  return results