mohbay commited on
Commit
9e4540a
·
verified ·
1 Parent(s): 9e4b885

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -16
app.py CHANGED
@@ -110,7 +110,6 @@
110
  # iface.launch()
111
 
112
 
113
-
114
  import torch
115
  import pandas as pd
116
  from sentence_transformers import SentenceTransformer, util
@@ -122,19 +121,14 @@ df2 = pd.read_csv("cleaned2.csv")
122
  embeddings = torch.load("embeddings1.pt")
123
  embeddings2 = torch.load("embeddings2.pt")
124
 
125
- def search_fatwa(query):
126
- # Handle both string and list inputs
127
- if isinstance(query, list):
128
- query = query[0] if query else ""
129
-
130
- if not query or query.strip() == "":
131
  return "No query provided"
132
 
133
- query_embedding = model.encode(query, convert_to_tensor=True)
134
  top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
135
  top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
136
 
137
- # Return formatted text (like your working first app)
138
  result = f"""Question 1: {df.iloc[top_idx]["question"]}
139
  Link 1: {df.iloc[top_idx]["link"]}
140
 
@@ -143,13 +137,12 @@ Link 2: {df2.iloc[top_idx2]["link"]}"""
143
 
144
  return result
145
 
146
- # Use the same structure as your working first app
 
147
  iface = gr.Interface(
148
- fn=search_fatwa,
149
  inputs=[gr.Textbox(label="text", lines=3)],
150
- outputs='text', # Changed to 'text' like your working app
151
- title="Search CSV"
152
  )
153
-
154
- # Enable API access for curl requests
155
- iface.launch(share=False, show_api=True)
 
110
  # iface.launch()
111
 
112
 
 
113
  import torch
114
  import pandas as pd
115
  from sentence_transformers import SentenceTransformer, util
 
121
  embeddings = torch.load("embeddings1.pt")
122
  embeddings2 = torch.load("embeddings2.pt")
123
 
124
+ def predict(text):
125
+ if not text or text.strip() == "":
 
 
 
 
126
  return "No query provided"
127
 
128
+ query_embedding = model.encode(text, convert_to_tensor=True)
129
  top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
130
  top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
131
 
 
132
  result = f"""Question 1: {df.iloc[top_idx]["question"]}
133
  Link 1: {df.iloc[top_idx]["link"]}
134
 
 
137
 
138
  return result
139
 
140
+ # Match the EXACT structure of your working translation app
141
+ title = "Search CSV"
142
  iface = gr.Interface(
143
+ fn=predict, # Changed from search_fatwa to predict
144
  inputs=[gr.Textbox(label="text", lines=3)],
145
+ outputs='text',
146
+ title=title,
147
  )
148
+ iface.launch()