mohbay commited on
Commit
8e3e50c
·
verified ·
1 Parent(s): b038a53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -4,18 +4,26 @@ from sentence_transformers import SentenceTransformer, util
4
 
5
  # Load data
6
  df = pd.read_excel("IslamWeb_output.xlsx")
7
-
8
  model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
9
  embeddings = model.encode(df["question"].tolist(), convert_to_tensor=True)
10
 
 
 
11
  def search_fatwa(query):
12
  query_embedding = model.encode(query, convert_to_tensor=True)
13
  scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
14
  top_idx = int(scores.argmax())
 
 
 
15
  return {
16
- "question": df.iloc[top_idx]["question"],
17
- "answer": df.iloc[top_idx]["answer"],
18
- "link": df.iloc[top_idx]["link"]
 
 
 
19
  }
20
 
21
  iface = gr.Interface(
 
4
 
5
  # Load data
6
  df = pd.read_excel("IslamWeb_output.xlsx")
7
+ df2 = pd.read_excel("JordanFatwas_all.xlsx")
8
  model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
9
  embeddings = model.encode(df["question"].tolist(), convert_to_tensor=True)
10
 
11
+ embeddings2 = model.encode(df2["question"].tolist(), convert_to_tensor=True)
12
+
13
  def search_fatwa(query):
14
  query_embedding = model.encode(query, convert_to_tensor=True)
15
  scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
16
  top_idx = int(scores.argmax())
17
+
18
+ scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
19
+ top_idx2 = int(scores2.argmax())
20
  return {
21
+ "question1": df.iloc[top_idx]["question"],
22
+ "answer1": df.iloc[top_idx]["answer"],
23
+ "link1": df.iloc[top_idx]["link"],
24
+ "question2": df2.iloc[top_idx2]["question"],
25
+ "answer2": df2.iloc[top_idx2]["answer"],
26
+ "link2": df2.iloc[top_idx2]["link"],
27
  }
28
 
29
  iface = gr.Interface(