Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,286 +1,447 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from sentence_transformers import SentenceTransformer, util
|
| 4 |
-
import gradio as gr
|
| 5 |
-
import re
|
| 6 |
-
from rank_bm25 import BM25Okapi
|
| 7 |
-
import numpy as np
|
| 8 |
|
| 9 |
-
# Load models
|
| 10 |
-
model = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 11 |
-
modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 12 |
|
| 13 |
-
# Load data
|
| 14 |
-
df = pd.read_csv("cleaned1.csv")
|
| 15 |
-
df2 = pd.read_csv("cleaned2.csv")
|
| 16 |
-
df3 = pd.read_csv("cleaned3.csv")
|
| 17 |
|
| 18 |
-
# Load pre-computed embeddings
|
| 19 |
-
embeddings = torch.load("embeddings1_1.pt")
|
| 20 |
-
embeddings2 = torch.load("embeddings2_1.pt")
|
| 21 |
-
embeddings3 = torch.load("embeddings3_1.pt")
|
| 22 |
|
| 23 |
-
embeddingsa = torch.load("embeddings1.pt")
|
| 24 |
-
embeddingsa2 = torch.load("embeddings2.pt")
|
| 25 |
-
embeddingsa3 = torch.load("embeddings3.pt")
|
| 26 |
|
| 27 |
-
# Extract questions and links
|
| 28 |
-
df_questions = df["question"].values
|
| 29 |
-
df_links = df["link"].values
|
| 30 |
-
df2_questions = df2["question"].values
|
| 31 |
-
df2_links = df2["link"].values
|
| 32 |
-
df3_questions = df3["question"].values
|
| 33 |
-
df3_links = df3["url"].values
|
| 34 |
|
| 35 |
-
ARABIC_STOPWORDS = {
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
}
|
| 40 |
|
| 41 |
-
def arabic_word_tokenize(text):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def prepare_bm25_corpus(questions):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Initialize BM25 models for each dataset
|
| 59 |
-
print("Initializing BM25 models...")
|
| 60 |
-
bm25_corpus1 = prepare_bm25_corpus(df_questions)
|
| 61 |
-
bm25_corpus2 = prepare_bm25_corpus(df2_questions)
|
| 62 |
-
bm25_corpus3 = prepare_bm25_corpus(df3_questions)
|
| 63 |
-
|
| 64 |
-
bm25_model1 = BM25Okapi(bm25_corpus1)
|
| 65 |
-
bm25_model2 = BM25Okapi(bm25_corpus2)
|
| 66 |
-
bm25_model3 = BM25Okapi(bm25_corpus3)
|
| 67 |
-
print("BM25 models initialized!")
|
| 68 |
-
|
| 69 |
-
def compute_bm25_scores(query, bm25_model):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
def compute_word_overlap(query, questions):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
def normalize_scores(scores):
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
def predict(text):
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
-
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
|
| 259 |
-
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
"query_info": {
|
| 265 |
-
"query_length":
|
| 266 |
-
"weights": {
|
| 267 |
-
"semantic": semantic_weight,
|
| 268 |
-
"bm25": bm25_weight,
|
| 269 |
-
"word_overlap": word_weight
|
| 270 |
-
}
|
| 271 |
}
|
| 272 |
}
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
title = "Enhanced Search with BM25"
|
| 277 |
iface = gr.Interface(
|
| 278 |
fn=predict,
|
| 279 |
inputs=[gr.Textbox(label="Search Query", lines=3)],
|
| 280 |
-
outputs=
|
| 281 |
title=title,
|
| 282 |
-
description="Arabic
|
| 283 |
)
|
| 284 |
|
| 285 |
if __name__ == "__main__":
|
| 286 |
-
iface.launch()
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# import pandas as pd
|
| 3 |
+
# from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
# import gradio as gr
|
| 5 |
+
# import re
|
| 6 |
+
# from rank_bm25 import BM25Okapi
|
| 7 |
+
# import numpy as np
|
| 8 |
|
| 9 |
+
# # Load models
|
| 10 |
+
# model = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 11 |
+
# modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 12 |
|
| 13 |
+
# # Load data
|
| 14 |
+
# df = pd.read_csv("cleaned1.csv")
|
| 15 |
+
# df2 = pd.read_csv("cleaned2.csv")
|
| 16 |
+
# df3 = pd.read_csv("cleaned3.csv")
|
| 17 |
|
| 18 |
+
# # Load pre-computed embeddings
|
| 19 |
+
# embeddings = torch.load("embeddings1_1.pt")
|
| 20 |
+
# embeddings2 = torch.load("embeddings2_1.pt")
|
| 21 |
+
# embeddings3 = torch.load("embeddings3_1.pt")
|
| 22 |
|
| 23 |
+
# embeddingsa = torch.load("embeddings1.pt")
|
| 24 |
+
# embeddingsa2 = torch.load("embeddings2.pt")
|
| 25 |
+
# embeddingsa3 = torch.load("embeddings3.pt")
|
| 26 |
|
| 27 |
+
# # Extract questions and links
|
| 28 |
+
# df_questions = df["question"].values
|
| 29 |
+
# df_links = df["link"].values
|
| 30 |
+
# df2_questions = df2["question"].values
|
| 31 |
+
# df2_links = df2["link"].values
|
| 32 |
+
# df3_questions = df3["question"].values
|
| 33 |
+
# df3_links = df3["url"].values
|
| 34 |
|
| 35 |
+
# ARABIC_STOPWORDS = {
|
| 36 |
+
# 'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
|
| 37 |
+
# 'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
|
| 38 |
+
# 'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ูู', 'ููุง', 'ููู
', 'ู', 'ุฃู
', 'ุฅู'
|
| 39 |
+
# }
|
| 40 |
|
| 41 |
+
# def arabic_word_tokenize(text):
|
| 42 |
+
# if not isinstance(text, str):
|
| 43 |
+
# return []
|
| 44 |
+
# # Remove diacritics
|
| 45 |
+
# text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
|
| 46 |
+
# # Extract only Arabic words (length โฅ 2)
|
| 47 |
+
# tokens = re.findall(r'[\u0600-\u06FF]{2,}', text)
|
| 48 |
+
# return [t for t in tokens if t not in ARABIC_STOPWORDS]
|
| 49 |
+
|
| 50 |
+
# def prepare_bm25_corpus(questions):
|
| 51 |
+
# """Prepare tokenized corpus for BM25"""
|
| 52 |
+
# tokenized_corpus = []
|
| 53 |
+
# for question in questions:
|
| 54 |
+
# tokens = arabic_word_tokenize(question)
|
| 55 |
+
# tokenized_corpus.append(tokens)
|
| 56 |
+
# return tokenized_corpus
|
| 57 |
+
|
| 58 |
+
# # Initialize BM25 models for each dataset
|
| 59 |
+
# print("Initializing BM25 models...")
|
| 60 |
+
# bm25_corpus1 = prepare_bm25_corpus(df_questions)
|
| 61 |
+
# bm25_corpus2 = prepare_bm25_corpus(df2_questions)
|
| 62 |
+
# bm25_corpus3 = prepare_bm25_corpus(df3_questions)
|
| 63 |
+
|
| 64 |
+
# bm25_model1 = BM25Okapi(bm25_corpus1)
|
| 65 |
+
# bm25_model2 = BM25Okapi(bm25_corpus2)
|
| 66 |
+
# bm25_model3 = BM25Okapi(bm25_corpus3)
|
| 67 |
+
# print("BM25 models initialized!")
|
| 68 |
+
|
| 69 |
+
# def compute_bm25_scores(query, bm25_model):
|
| 70 |
+
# """Compute BM25 scores for a query"""
|
| 71 |
+
# query_tokens = arabic_word_tokenize(query)
|
| 72 |
+
# if not query_tokens:
|
| 73 |
+
# return np.zeros(len(bm25_model.corpus))
|
| 74 |
|
| 75 |
+
# scores = bm25_model.get_scores(query_tokens)
|
| 76 |
+
# return scores
|
| 77 |
|
| 78 |
+
# def compute_word_overlap(query, questions):
|
| 79 |
+
# """Enhanced word overlap computation"""
|
| 80 |
+
# query_words = set(arabic_word_tokenize(query))
|
| 81 |
+
# if len(query_words) == 0:
|
| 82 |
+
# return [0.0] * len(questions)
|
| 83 |
|
| 84 |
+
# overlaps = []
|
| 85 |
+
# for q in questions:
|
| 86 |
+
# q_words = set(arabic_word_tokenize(q))
|
| 87 |
+
# if len(q_words) == 0:
|
| 88 |
+
# overlaps.append(0.0)
|
| 89 |
+
# continue
|
| 90 |
|
| 91 |
+
# # Use Jaccard similarity (intersection over union)
|
| 92 |
+
# intersection = len(query_words & q_words)
|
| 93 |
+
# union = len(query_words | q_words)
|
| 94 |
+
# jaccard = intersection / union if union > 0 else 0.0
|
| 95 |
|
| 96 |
+
# # Also compute coverage (how much of query is matched)
|
| 97 |
+
# coverage = intersection / len(query_words)
|
| 98 |
|
| 99 |
+
# # Combine both: prioritize coverage but consider similarity
|
| 100 |
+
# overlap_score = 0.7 * coverage + 0.3 * jaccard
|
| 101 |
+
# overlaps.append(overlap_score)
|
| 102 |
|
| 103 |
+
# return overlaps
|
| 104 |
|
| 105 |
+
# def normalize_scores(scores):
|
| 106 |
+
# """Normalize scores to 0-1 range"""
|
| 107 |
+
# scores = np.array(scores)
|
| 108 |
+
# if np.max(scores) == np.min(scores):
|
| 109 |
+
# return np.zeros_like(scores)
|
| 110 |
+
# return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
|
| 111 |
+
|
| 112 |
+
# def predict(text):
|
| 113 |
+
# print(f"Received query: {text}")
|
| 114 |
+
# if not text or text.strip() == "":
|
| 115 |
+
# return "No query provided"
|
| 116 |
+
|
| 117 |
+
# # Semantic similarity scores
|
| 118 |
+
# query_embedding = model.encode(text, convert_to_tensor=True)
|
| 119 |
+
# query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
| 120 |
+
|
| 121 |
+
# # Cosine similarities (averaged from two models)
|
| 122 |
+
# sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
|
| 123 |
+
# util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
|
| 124 |
+
# sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
|
| 125 |
+
# util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]) / 2
|
| 126 |
+
# sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
|
| 127 |
+
# util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
|
| 128 |
+
|
| 129 |
+
# # BM25 scores
|
| 130 |
+
# bm25_scores1 = compute_bm25_scores(text, bm25_model1)
|
| 131 |
+
# bm25_scores2 = compute_bm25_scores(text, bm25_model2)
|
| 132 |
+
# bm25_scores3 = compute_bm25_scores(text, bm25_model3)
|
| 133 |
+
|
| 134 |
+
# # Word overlap scores
|
| 135 |
+
# word_overlap1 = compute_word_overlap(text, df_questions)
|
| 136 |
+
# word_overlap2 = compute_word_overlap(text, df2_questions)
|
| 137 |
+
# word_overlap3 = compute_word_overlap(text, df3_questions)
|
| 138 |
+
|
| 139 |
+
# # Normalize all scores for fair combination
|
| 140 |
+
# norm_sim1 = normalize_scores(sim_scores1.cpu().numpy())
|
| 141 |
+
# norm_sim2 = normalize_scores(sim_scores2.cpu().numpy())
|
| 142 |
+
# norm_sim3 = normalize_scores(sim_scores3.cpu().numpy())
|
| 143 |
|
| 144 |
+
# norm_bm25_1 = normalize_scores(bm25_scores1)
|
| 145 |
+
# norm_bm25_2 = normalize_scores(bm25_scores2)
|
| 146 |
+
# norm_bm25_3 = normalize_scores(bm25_scores3)
|
| 147 |
|
| 148 |
+
# norm_word1 = normalize_scores(word_overlap1)
|
| 149 |
+
# norm_word2 = normalize_scores(word_overlap2)
|
| 150 |
+
# norm_word3 = normalize_scores(word_overlap3)
|
| 151 |
|
| 152 |
+
# # Adaptive weighting based on query characteristics
|
| 153 |
+
# query_words = arabic_word_tokenize(text)
|
| 154 |
+
# query_length = len(query_words)
|
| 155 |
|
| 156 |
+
# if query_length <= 2:
|
| 157 |
+
# # Short queries: prioritize exact matches (BM25 + word overlap)
|
| 158 |
+
# semantic_weight = 0.3
|
| 159 |
+
# bm25_weight = 0.4
|
| 160 |
+
# word_weight = 0.3
|
| 161 |
+
# elif query_length <= 5:
|
| 162 |
+
# # Medium queries: balanced approach
|
| 163 |
+
# semantic_weight = 0.4
|
| 164 |
+
# bm25_weight = 0.35
|
| 165 |
+
# word_weight = 0.25
|
| 166 |
+
# else:
|
| 167 |
+
# # Long queries: prioritize semantic understanding
|
| 168 |
+
# semantic_weight = 0.5
|
| 169 |
+
# bm25_weight = 0.3
|
| 170 |
+
# word_weight = 0.2
|
| 171 |
|
| 172 |
+
# def create_combined_results(questions, links, norm_semantic, norm_bm25, norm_word):
|
| 173 |
+
# combined_results = []
|
| 174 |
|
| 175 |
+
# for i in range(len(questions)):
|
| 176 |
+
# semantic_score = float(norm_semantic[i])
|
| 177 |
+
# bm25_score = float(norm_bm25[i])
|
| 178 |
+
# word_score = float(norm_word[i])
|
| 179 |
|
| 180 |
+
# # Enhanced scoring with BM25
|
| 181 |
+
# combined_score = (semantic_weight * semantic_score +
|
| 182 |
+
# bm25_weight * bm25_score +
|
| 183 |
+
# word_weight * word_score)
|
| 184 |
|
| 185 |
+
# # Boost results that perform well across multiple metrics
|
| 186 |
+
# high_performance_count = sum([
|
| 187 |
+
# semantic_score > 0.7,
|
| 188 |
+
# bm25_score > 0.7,
|
| 189 |
+
# word_score > 0.5
|
| 190 |
+
# ])
|
| 191 |
|
| 192 |
+
# if high_performance_count >= 2:
|
| 193 |
+
# boost = 0.1
|
| 194 |
+
# elif high_performance_count >= 1:
|
| 195 |
+
# boost = 0.05
|
| 196 |
+
# else:
|
| 197 |
+
# boost = 0.0
|
| 198 |
|
| 199 |
+
# final_score = combined_score + boost
|
| 200 |
|
| 201 |
+
# combined_results.append({
|
| 202 |
+
# "question": questions[i],
|
| 203 |
+
# "link": links[i],
|
| 204 |
+
# "semantic_score": semantic_score,
|
| 205 |
+
# "bm25_score": bm25_score,
|
| 206 |
+
# "word_overlap_score": word_score,
|
| 207 |
+
# "combined_score": final_score
|
| 208 |
+
# })
|
| 209 |
|
| 210 |
+
# return combined_results
|
| 211 |
+
|
| 212 |
+
# # Create combined results for all datasets
|
| 213 |
+
# combined1 = create_combined_results(df_questions, df_links, norm_sim1, norm_bm25_1, norm_word1)
|
| 214 |
+
# combined2 = create_combined_results(df2_questions, df2_links, norm_sim2, norm_bm25_2, norm_word2)
|
| 215 |
+
# combined3 = create_combined_results(df3_questions, df3_links, norm_sim3, norm_bm25_3, norm_word3)
|
| 216 |
+
|
| 217 |
+
# def get_diverse_top_results(combined_results, top_k=5):
|
| 218 |
+
# """Get diverse top results using multiple ranking strategies"""
|
| 219 |
+
# # Sort by combined score and get top candidates
|
| 220 |
+
# by_combined = sorted(combined_results, key=lambda x: x["combined_score"], reverse=True)
|
| 221 |
+
# top_combined = by_combined[:3]
|
| 222 |
|
| 223 |
+
# # Get questions from top combined to avoid duplicates
|
| 224 |
+
# used_questions = {item["question"] for item in top_combined}
|
| 225 |
|
| 226 |
+
# # Add best BM25 result not already included
|
| 227 |
+
# by_bm25 = sorted(combined_results, key=lambda x: x["bm25_score"], reverse=True)
|
| 228 |
+
# bm25_pick = None
|
| 229 |
+
# for item in by_bm25:
|
| 230 |
+
# if item["question"] not in used_questions:
|
| 231 |
+
# bm25_pick = item
|
| 232 |
+
# break
|
| 233 |
|
| 234 |
+
# # Add best semantic result not already included
|
| 235 |
+
# by_semantic = sorted(combined_results, key=lambda x: x["semantic_score"], reverse=True)
|
| 236 |
+
# semantic_pick = None
|
| 237 |
+
# if bm25_pick:
|
| 238 |
+
# used_questions.add(bm25_pick["question"])
|
| 239 |
|
| 240 |
+
# for item in by_semantic:
|
| 241 |
+
# if item["question"] not in used_questions:
|
| 242 |
+
# semantic_pick = item
|
| 243 |
+
# break
|
| 244 |
|
| 245 |
+
# # Combine results
|
| 246 |
+
# final_results = top_combined.copy()
|
| 247 |
+
# if bm25_pick:
|
| 248 |
+
# final_results.append(bm25_pick)
|
| 249 |
+
# if semantic_pick:
|
| 250 |
+
# final_results.append(semantic_pick)
|
| 251 |
|
| 252 |
+
# return final_results[:top_k]
|
| 253 |
|
| 254 |
+
# # Get top results for each dataset
|
| 255 |
+
# top1 = get_diverse_top_results(combined1)
|
| 256 |
+
# top2 = get_diverse_top_results(combined2)
|
| 257 |
+
# top3 = get_diverse_top_results(combined3)
|
| 258 |
|
| 259 |
+
# results = {
|
| 260 |
|
| 261 |
+
# "top2": top2,
|
| 262 |
+
# "top3": top3,
|
| 263 |
+
# "top1": top1,
|
| 264 |
+
# "query_info": {
|
| 265 |
+
# "query_length": query_length,
|
| 266 |
+
# "weights": {
|
| 267 |
+
# "semantic": semantic_weight,
|
| 268 |
+
# "bm25": bm25_weight,
|
| 269 |
+
# "word_overlap": word_weight
|
| 270 |
+
# }
|
| 271 |
+
# }
|
| 272 |
+
# }
|
| 273 |
+
|
| 274 |
+
# return results
|
| 275 |
+
|
| 276 |
+
# title = "Enhanced Search with BM25"
|
| 277 |
+
# iface = gr.Interface(
|
| 278 |
+
# fn=predict,
|
| 279 |
+
# inputs=[gr.Textbox(label="Search Query", lines=3)],
|
| 280 |
+
# outputs='json',
|
| 281 |
+
# title=title,
|
| 282 |
+
# description="Arabic text search using combined semantic similarity, BM25, and word overlap scoring"
|
| 283 |
+
# )
|
| 284 |
+
|
| 285 |
+
# if __name__ == "__main__":
|
| 286 |
+
# iface.launch()
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
import torch
|
| 290 |
+
import pandas as pd
|
| 291 |
+
from sentence_transformers import SentenceTransformer, util
|
| 292 |
+
import gradio as gr
|
| 293 |
+
import re
|
| 294 |
+
import numpy as np
|
| 295 |
+
import math
|
| 296 |
+
from collections import Counter
|
| 297 |
+
|
| 298 |
+
# Load both models
|
| 299 |
+
model1 = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 300 |
+
model2 = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 301 |
+
|
| 302 |
+
# Load data
|
| 303 |
+
print("Loading data and embeddings...")
|
| 304 |
+
df = pd.read_csv("cleaned1.csv")
|
| 305 |
+
df2 = pd.read_csv("cleaned2.csv")
|
| 306 |
+
df3 = pd.read_csv("cleaned3.csv")
|
| 307 |
+
|
| 308 |
+
embeddings1 = torch.load("embeddings1_1.pt")
|
| 309 |
+
embeddings2 = torch.load("embeddings2_1.pt")
|
| 310 |
+
embeddings3 = torch.load("embeddings3_1.pt")
|
| 311 |
+
|
| 312 |
+
embeddings1a = torch.load("embeddings1.pt")
|
| 313 |
+
embeddings2a = torch.load("embeddings2.pt")
|
| 314 |
+
embeddings3a = torch.load("embeddings3.pt")
|
| 315 |
+
|
| 316 |
+
# Arabic stopwords
|
| 317 |
+
ARABIC_STOPWORDS = {
|
| 318 |
+
'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
|
| 319 |
+
'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
|
| 320 |
+
'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ูู', 'ููุง', 'ููู
', 'ู', 'ุฃู
', 'ุฅู',
|
| 321 |
+
'ุฑุถู', 'ุนูููุง', 'ุนููู
', 'ุนูู', 'ุนูููู
', 'ุตูู', 'ูุณูู
',
|
| 322 |
+
'ุณูุงู
', 'ุนููู', 'ุงูุฑุณูู', 'ุงููุจู', 'ุนููู', 'ุงูุณูุงู
', 'ุญุฏูุซ', 'ุงุญุงุฏูุซ'
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
def arabic_word_tokenize(text):
|
| 326 |
+
if not isinstance(text, str): return []
|
| 327 |
+
text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
|
| 328 |
+
return [t for t in re.findall(r'[\u0600-\u06FF]{2,}', text) if t not in ARABIC_STOPWORDS]
|
| 329 |
+
|
| 330 |
+
# Pre-tokenize questions and compute doc frequencies
|
| 331 |
+
def setup_tokenization_and_freqs(questions):
|
| 332 |
+
tokenized = [arabic_word_tokenize(q) for q in questions]
|
| 333 |
+
doc_freqs = Counter(word for doc in tokenized for word in set(doc))
|
| 334 |
+
return tokenized, doc_freqs
|
| 335 |
+
|
| 336 |
+
tokenized1, doc_freqs1 = setup_tokenization_and_freqs(df["question"].values)
|
| 337 |
+
tokenized2, doc_freqs2 = setup_tokenization_and_freqs(df2["question"].values)
|
| 338 |
+
tokenized3, doc_freqs3 = setup_tokenization_and_freqs(df3["question"].values)
|
| 339 |
+
|
| 340 |
+
def compute_word_overlap(query, questions):
|
| 341 |
+
q_words = set(arabic_word_tokenize(query))
|
| 342 |
+
scores = []
|
| 343 |
+
for doc in questions:
|
| 344 |
+
d_words = set(arabic_word_tokenize(doc))
|
| 345 |
+
if not d_words or not q_words:
|
| 346 |
+
scores.append(0.0)
|
| 347 |
+
continue
|
| 348 |
+
inter = len(q_words & d_words)
|
| 349 |
+
union = len(q_words | d_words)
|
| 350 |
+
jaccard = inter / union if union else 0.0
|
| 351 |
+
coverage = inter / len(q_words)
|
| 352 |
+
scores.append(0.7 * coverage + 0.3 * jaccard)
|
| 353 |
+
return scores
|
| 354 |
+
|
| 355 |
+
def lightweight_bm25_score(query_tokens, doc_tokens, doc_freqs, total_docs, k1=1.2, b=0.75):
|
| 356 |
+
score = 0.0
|
| 357 |
+
doc_len = len(doc_tokens)
|
| 358 |
+
avg_doc_len = 10
|
| 359 |
+
for term in query_tokens:
|
| 360 |
+
if term in doc_tokens:
|
| 361 |
+
tf = doc_tokens.count(term)
|
| 362 |
+
df = doc_freqs.get(term, 0)
|
| 363 |
+
if df > 0:
|
| 364 |
+
idf = math.log((total_docs - df + 0.5) / (df + 0.5))
|
| 365 |
+
score += idf * (tf * (k1 + 1)) / (tf + k1 * (1 - b + b * (doc_len / avg_doc_len)))
|
| 366 |
+
return score
|
| 367 |
+
|
| 368 |
+
def normalize_scores(scores):
|
| 369 |
+
arr = np.array(scores)
|
| 370 |
+
if arr.max() == arr.min(): return np.zeros_like(arr)
|
| 371 |
+
return (arr - arr.min()) / (arr.max() - arr.min())
|
| 372 |
+
|
| 373 |
+
def combine_scores(query, questions, tokenized, doc_freqs, emb1, emb2):
|
| 374 |
+
total_docs = len(questions)
|
| 375 |
+
q_emb1 = model1.encode(query, convert_to_tensor=True)
|
| 376 |
+
q_emb2 = model2.encode(query, convert_to_tensor=True)
|
| 377 |
+
|
| 378 |
+
sim1 = util.pytorch_cos_sim(q_emb1, emb1)[0]
|
| 379 |
+
sim2 = util.pytorch_cos_sim(q_emb2, emb2)[0]
|
| 380 |
+
sim_scores = ((sim1 + sim2) / 2).cpu().numpy()
|
| 381 |
+
|
| 382 |
+
bm25_scores = [lightweight_bm25_score(arabic_word_tokenize(query), doc_tokens, doc_freqs, total_docs)
|
| 383 |
+
for doc_tokens in tokenized]
|
| 384 |
+
word_scores = compute_word_overlap(query, questions)
|
| 385 |
+
|
| 386 |
+
norm_bm25 = normalize_scores(bm25_scores)
|
| 387 |
+
norm_word = normalize_scores(word_scores)
|
| 388 |
+
norm_sim = normalize_scores(sim_scores)
|
| 389 |
+
|
| 390 |
+
query_len = len(arabic_word_tokenize(query))
|
| 391 |
+
if query_len <= 2:
|
| 392 |
+
w_sem, w_bm, w_word = 0.3, 0.4, 0.3
|
| 393 |
+
elif query_len <= 5:
|
| 394 |
+
w_sem, w_bm, w_word = 0.4, 0.35, 0.25
|
| 395 |
+
else:
|
| 396 |
+
w_sem, w_bm, w_word = 0.5, 0.3, 0.2
|
| 397 |
+
|
| 398 |
+
results = []
|
| 399 |
+
for i, q in enumerate(questions):
|
| 400 |
+
sem, bm, word = norm_sim[i], norm_bm25[i], norm_word[i]
|
| 401 |
+
combined = w_sem*sem + w_bm*bm + w_word*word
|
| 402 |
+
boost = 0.1 if sum([sem > 0.7, bm > 0.7, word > 0.5]) >= 2 else (0.05 if sum([sem > 0.7, bm > 0.7, word > 0.5]) == 1 else 0.0)
|
| 403 |
+
results.append({
|
| 404 |
+
"question": q,
|
| 405 |
+
"semantic_score": sem,
|
| 406 |
+
"bm25_score": bm,
|
| 407 |
+
"word_overlap_score": word,
|
| 408 |
+
"combined_score": combined + boost
|
| 409 |
+
})
|
| 410 |
+
return results
|
| 411 |
+
|
| 412 |
+
def get_top_diverse(results, links, top_k=5):
|
| 413 |
+
results = [dict(r, link=links[i]) for i, r in enumerate(results)]
|
| 414 |
+
top_combined = sorted(results, key=lambda x: x['combined_score'], reverse=True)[:3]
|
| 415 |
+
used_q = {r['question'] for r in top_combined}
|
| 416 |
+
top_bm = next((r for r in sorted(results, key=lambda x: x['bm25_score'], reverse=True) if r['question'] not in used_q), None)
|
| 417 |
+
if top_bm: used_q.add(top_bm['question'])
|
| 418 |
+
top_sem = next((r for r in sorted(results, key=lambda x: x['semantic_score'], reverse=True) if r['question'] not in used_q), None)
|
| 419 |
+
final = top_combined + ([top_bm] if top_bm else []) + ([top_sem] if top_sem else [])
|
| 420 |
+
return final[:top_k]
|
| 421 |
+
|
| 422 |
+
def predict(query):
|
| 423 |
+
print(f"Query: {query}")
|
| 424 |
+
results1 = combine_scores(query, df["question"].values, tokenized1, doc_freqs1, embeddings1, embeddings1a)
|
| 425 |
+
results2 = combine_scores(query, df2["question"].values, tokenized2, doc_freqs2, embeddings2, embeddings2a)
|
| 426 |
+
results3 = combine_scores(query, df3["question"].values, tokenized3, doc_freqs3, embeddings3, embeddings3a)
|
| 427 |
+
|
| 428 |
+
return {
|
| 429 |
+
"top2": get_top_diverse(results2, df2["link"].values),
|
| 430 |
+
"top3": get_top_diverse(results3, df3["url"].values),
|
| 431 |
+
"top1": get_top_diverse(results1, df["link"].values),
|
| 432 |
"query_info": {
|
| 433 |
+
"query_length": len(arabic_word_tokenize(query))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
}
|
| 435 |
}
|
| 436 |
|
| 437 |
+
title = "Arabic Search: Dual-Model + BM25 + Overlap"
|
|
|
|
|
|
|
| 438 |
iface = gr.Interface(
|
| 439 |
fn=predict,
|
| 440 |
inputs=[gr.Textbox(label="Search Query", lines=3)],
|
| 441 |
+
outputs="json",
|
| 442 |
title=title,
|
| 443 |
+
description="Accurate Arabic search using two semantic models, fast BM25, and word overlap."
|
| 444 |
)
|
| 445 |
|
| 446 |
if __name__ == "__main__":
|
| 447 |
+
iface.launch()
|