Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,6 @@ embeddingsa = torch.load("embeddings1.pt")
|
|
18 |
embeddingsa2 = torch.load("embeddings2.pt")
|
19 |
embeddingsa3 = torch.load("embeddings3.pt")
|
20 |
|
21 |
-
# Pre-extract DataFrame columns to avoid repeated iloc calls
|
22 |
df_questions = df["question"].values
|
23 |
df_links = df["link"].values
|
24 |
df2_questions = df2["question"].values
|
@@ -31,7 +30,6 @@ def arabic_word_tokenize(text):
|
|
31 |
return []
|
32 |
return re.findall(r'\w+', text)
|
33 |
|
34 |
-
|
35 |
def compute_word_overlap(query, questions):
|
36 |
query_words = set(arabic_word_tokenize(query))
|
37 |
overlaps = []
|
@@ -47,115 +45,68 @@ def compute_word_overlap(query, questions):
|
|
47 |
def predict(text):
|
48 |
if not text or text.strip() == "":
|
49 |
return "No query provided"
|
50 |
-
|
51 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
52 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0]
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
all_sim_scores3.append(sim_scores3)
|
64 |
-
|
65 |
-
sim_scores1a = util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]
|
66 |
-
sim_scores2a = util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]
|
67 |
-
sim_scores3a = util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]
|
68 |
-
|
69 |
-
all_sim_scores1.append(sim_scores1a)
|
70 |
-
all_sim_scores2.append(sim_scores2a)
|
71 |
-
all_sim_scores3.append(sim_scores3a)
|
72 |
-
|
73 |
-
sim_scores1 = torch.stack(all_sim_scores1).mean(dim=0)
|
74 |
-
sim_scores2 = torch.stack(all_sim_scores2).mean(dim=0)
|
75 |
-
sim_scores3 = torch.stack(all_sim_scores3).mean(dim=0)
|
76 |
-
|
77 |
-
# Compute word overlap scores
|
78 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
79 |
-
|
80 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
81 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
82 |
|
83 |
-
|
84 |
-
weight = 0.5 # word overlap weight
|
85 |
-
combined_results = []
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
"question": df_questions[i],
|
91 |
"link": df_links[i],
|
92 |
-
"cosine_score": float(
|
93 |
"word_overlap_score": float(word_overlap1[i]),
|
94 |
-
"combined_score":
|
95 |
-
}
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
"question": df2_questions[i],
|
101 |
"link": df2_links[i],
|
102 |
-
"cosine_score": float(
|
103 |
"word_overlap_score": float(word_overlap2[i]),
|
104 |
-
"combined_score":
|
105 |
-
}
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
"question": df3_questions[i],
|
111 |
"link": df3_links[i],
|
112 |
-
"cosine_score": float(
|
113 |
"word_overlap_score": float(word_overlap3[i]),
|
114 |
-
"combined_score":
|
115 |
-
}
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# Also keep your original top1/top2/top3 as is
|
121 |
-
top3_scores1, top3_idx1 = sim_scores1.topk(3)
|
122 |
-
top3_scores2, top3_idx2 = sim_scores2.topk(3)
|
123 |
-
top3_scores3, top3_idx3 = sim_scores3.topk(3)
|
124 |
-
|
125 |
-
top3_idx1_cpu = top3_idx1.cpu().numpy()
|
126 |
-
top3_idx2_cpu = top3_idx2.cpu().numpy()
|
127 |
-
top3_idx3_cpu = top3_idx3.cpu().numpy()
|
128 |
-
|
129 |
-
top3_scores1_cpu = top3_scores1.cpu().numpy()
|
130 |
-
top3_scores2_cpu = top3_scores2.cpu().numpy()
|
131 |
-
top3_scores3_cpu = top3_scores3.cpu().numpy()
|
132 |
|
133 |
results = {
|
134 |
-
"top1":
|
135 |
-
|
136 |
-
|
137 |
-
"link": df_links[idx],
|
138 |
-
"score": float(score)
|
139 |
-
}
|
140 |
-
for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
|
141 |
-
],
|
142 |
-
"top2": [
|
143 |
-
{
|
144 |
-
"question": df2_questions[idx],
|
145 |
-
"link": df2_links[idx],
|
146 |
-
"score": float(score)
|
147 |
-
}
|
148 |
-
for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu)
|
149 |
-
],
|
150 |
-
"top3": [
|
151 |
-
{
|
152 |
-
"question": df3_questions[idx],
|
153 |
-
"link": df3_links[idx],
|
154 |
-
"score": float(score)
|
155 |
-
}
|
156 |
-
for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
|
157 |
-
],
|
158 |
-
"top3_combined": top3_combined
|
159 |
}
|
160 |
|
161 |
return results
|
|
|
18 |
embeddingsa2 = torch.load("embeddings2.pt")
|
19 |
embeddingsa3 = torch.load("embeddings3.pt")
|
20 |
|
|
|
21 |
df_questions = df["question"].values
|
22 |
df_links = df["link"].values
|
23 |
df2_questions = df2["question"].values
|
|
|
30 |
return []
|
31 |
return re.findall(r'\w+', text)
|
32 |
|
|
|
33 |
def compute_word_overlap(query, questions):
|
34 |
query_words = set(arabic_word_tokenize(query))
|
35 |
overlaps = []
|
|
|
45 |
def predict(text):
|
46 |
if not text or text.strip() == "":
|
47 |
return "No query provided"
|
48 |
+
|
49 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
50 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
51 |
+
|
52 |
+
# Cosine similarities
|
53 |
+
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
|
54 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
|
55 |
+
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
|
56 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]) / 2
|
57 |
+
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
|
58 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
|
59 |
+
|
60 |
+
# Word overlaps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
|
|
62 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
63 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
64 |
|
65 |
+
weight = 0.4
|
|
|
|
|
66 |
|
67 |
+
# Collect top1
|
68 |
+
combined1 = [
|
69 |
+
{
|
70 |
"question": df_questions[i],
|
71 |
"link": df_links[i],
|
72 |
+
"cosine_score": float(sim_scores1[i].cpu().item()),
|
73 |
"word_overlap_score": float(word_overlap1[i]),
|
74 |
+
"combined_score": float(sim_scores1[i].cpu().item()) + weight * word_overlap1[i]
|
75 |
+
}
|
76 |
+
for i in range(len(df_questions))
|
77 |
+
]
|
78 |
+
top1 = sorted(combined1, key=lambda x: x["combined_score"], reverse=True)[:3]
|
79 |
+
|
80 |
+
# Collect top2
|
81 |
+
combined2 = [
|
82 |
+
{
|
83 |
"question": df2_questions[i],
|
84 |
"link": df2_links[i],
|
85 |
+
"cosine_score": float(sim_scores2[i].cpu().item()),
|
86 |
"word_overlap_score": float(word_overlap2[i]),
|
87 |
+
"combined_score": float(sim_scores2[i].cpu().item()) + weight * word_overlap2[i]
|
88 |
+
}
|
89 |
+
for i in range(len(df2_questions))
|
90 |
+
]
|
91 |
+
top2 = sorted(combined2, key=lambda x: x["combined_score"], reverse=True)[:3]
|
92 |
+
|
93 |
+
# Collect top3
|
94 |
+
combined3 = [
|
95 |
+
{
|
96 |
"question": df3_questions[i],
|
97 |
"link": df3_links[i],
|
98 |
+
"cosine_score": float(sim_scores3[i].cpu().item()),
|
99 |
"word_overlap_score": float(word_overlap3[i]),
|
100 |
+
"combined_score": float(sim_scores3[i].cpu().item()) + weight * word_overlap3[i]
|
101 |
+
}
|
102 |
+
for i in range(len(df3_questions))
|
103 |
+
]
|
104 |
+
top3 = sorted(combined3, key=lambda x: x["combined_score"], reverse=True)[:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
results = {
|
107 |
+
"top1": top1,
|
108 |
+
"top2": top2,
|
109 |
+
"top3": top3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
}
|
111 |
|
112 |
return results
|