Spaces:
Running
Running
# import gradio as gr | |
# import pandas as pd | |
# from sentence_transformers import SentenceTransformer, util | |
# # Load files | |
# df = pd.read_excel("IslamWeb_output.xlsx") | |
# df2 = pd.read_excel("JordanFatwas_all.xlsx") | |
# # Validate | |
# for d, name in [(df, "IslamWeb"), (df2, "JordanFatwas")]: | |
# if not {"question", "link"}.issubset(d.columns): | |
# raise ValueError(f"❌ Missing required columns in {name}") | |
# # Load model + encode | |
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") | |
# embeddings = model.encode(df["question"].fillna('').tolist(), convert_to_tensor=True) | |
# embeddings2 = model.encode(df2["question"].fillna('').tolist(), convert_to_tensor=True) | |
# # Define function | |
# def search_fatwa(query): | |
# query_embedding = model.encode(query, convert_to_tensor=True) | |
# scores = util.pytorch_cos_sim(query_embedding, embeddings)[0] | |
# top_idx = int(scores.argmax()) | |
# scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0] | |
# top_idx2 = int(scores2.argmax()) | |
# return { | |
# "question1": df.iloc[top_idx]["question"], | |
# "link1": df.iloc[top_idx]["link"], | |
# "question2": df2.iloc[top_idx2]["question"], | |
# "link2": df2.iloc[top_idx2]["link"], | |
# } | |
# # Interface | |
# iface = gr.Interface( | |
# fn=search_fatwa, | |
# inputs="text", | |
# outputs="json", | |
# allow_flagging="never", | |
# title="Fatwa Search (Dual Source)", | |
# description="Get the most relevant fatwas from both datasets" | |
# ) | |
# iface.launch() | |
# import torch | |
# import pandas as pd | |
# from sentence_transformers import SentenceTransformer, util | |
# import gradio as gr | |
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") | |
# df = pd.read_csv("cleaned1.csv") | |
# df2 = pd.read_csv("cleaned2.csv") | |
# embeddings = torch.load("embeddings1.pt") | |
# embeddings2 = torch.load("embeddings2.pt") | |
# # def search_fatwa(data): | |
# # query = data[0] if data else "" | |
# # query_embedding = model.encode(query, convert_to_tensor=True) | |
# # top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax()) | |
# # top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax()) | |
# # return { | |
# # "question1": df.iloc[top_idx]["question"], | |
# # "link1": df.iloc[top_idx]["link"], | |
# # "question2": df2.iloc[top_idx2]["question"], | |
# # "link2": df2.iloc[top_idx2]["link"] | |
# # } | |
# def search_fatwa(data): | |
# query = data[0] if isinstance(data, list) else data | |
# if not query: | |
# return {"question1": "", "link1": "", "question2": "", "link2": ""} | |
# query_embedding = model.encode(query, convert_to_tensor=True) | |
# top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax()) | |
# top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax()) | |
# # return { | |
# # "question1": df.iloc[top_idx]["question"], | |
# # "link1": df.iloc[top_idx]["link"], | |
# # "question2": df2.iloc[top_idx2]["question"], | |
# # "link2": df2.iloc[top_idx2]["link"] | |
# # } | |
# result = f"""Question 1: {df.iloc[top_idx]["question"]} | |
# Link 1: {df.iloc[top_idx]["link"]} | |
# Question 2: {df2.iloc[top_idx2]["question"]} | |
# Link 2: {df2.iloc[top_idx2]["link"]}""" | |
# return result | |
# iface = gr.Interface( | |
# fn=search_fatwa, | |
# inputs=[gr.Textbox(label="text", lines=3)], | |
# outputs="text" # Changed from "json" to "text" | |
# ) | |
# # iface = gr.Interface(fn=search_fatwa, inputs=[gr.Textbox(label="text", lines=3)], outputs="json") | |
# # iface = gr.Interface( | |
# # fn=predict, | |
# # inputs=[gr.Textbox(label="text", lines=3)], | |
# # outputs='text', | |
# # title=title, | |
# # ) | |
# iface.launch() | |
import torch | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer, util | |
import gradio as gr | |
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") | |
df = pd.read_csv("cleaned1.csv") | |
df2 = pd.read_csv("cleaned2.csv") | |
df3 = pd.read_csv("cleaned3.csv") | |
embeddings = torch.load("embeddings1.pt") | |
embeddings2 = torch.load("embeddings2.pt") | |
embeddings3 = torch.load("embeddings3.pt") | |
# Pre-extract DataFrame columns to avoid repeated iloc calls | |
df_questions = df["question"].values | |
df_links = df["link"].values | |
df2_questions = df2["question"].values | |
df2_links = df2["link"].values | |
df3_questions = df3["question"].values | |
df3_links = df3["url"].values | |
def predict(text): | |
if not text or text.strip() == "": | |
return "No query provided" | |
query_embedding = model.encode(text, convert_to_tensor=True) | |
# Compute similarity scores | |
sim_scores1 = util.pytorch_cos_sim(query_embedding, embeddings)[0] | |
sim_scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0] | |
sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0] | |
# Get top 3 values and indices in one call | |
top3_scores1, top3_idx1 = sim_scores1.topk(3) | |
top3_scores2, top3_idx2 = sim_scores2.topk(3) | |
top3_scores3, top3_idx3 = sim_scores3.topk(3) | |
# Convert to CPU once | |
top3_idx1_cpu = top3_idx1.cpu().numpy() | |
top3_idx2_cpu = top3_idx2.cpu().numpy() | |
top3_idx3_cpu = top3_idx3.cpu().numpy() | |
top3_scores1_cpu = top3_scores1.cpu().numpy() | |
top3_scores2_cpu = top3_scores2.cpu().numpy() | |
top3_scores3_cpu = top3_scores3.cpu().numpy() | |
# Prepare results using pre-extracted arrays | |
results = { | |
"top1": [ | |
{ | |
"question": df_questions[idx], | |
"link": df_links[idx], | |
"score": float(score) | |
} | |
for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu) | |
], | |
"top2": [ | |
{ | |
"question": df2_questions[idx], | |
"link": df2_links[idx], | |
"score": float(score) | |
} | |
for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu) | |
], | |
"top3": [ | |
{ | |
"question": df3_questions[idx], | |
"link": df3_links[idx], | |
"score": float(score) | |
} | |
for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu) | |
], | |
} | |
return results | |
# Match the EXACT structure of your working translation app | |
title = "Search CSV" | |
iface = gr.Interface( | |
fn=predict, # Changed from search_fatwa to predict | |
inputs=[gr.Textbox(label="text", lines=3)], | |
outputs='json', | |
title=title, | |
) | |
iface.launch() |