searchcsv2 / app.py
mohbay's picture
Update app.py
72b5d84 verified
raw
history blame
6.45 kB
# import gradio as gr
# import pandas as pd
# from sentence_transformers import SentenceTransformer, util
# # Load files
# df = pd.read_excel("IslamWeb_output.xlsx")
# df2 = pd.read_excel("JordanFatwas_all.xlsx")
# # Validate
# for d, name in [(df, "IslamWeb"), (df2, "JordanFatwas")]:
# if not {"question", "link"}.issubset(d.columns):
# raise ValueError(f"❌ Missing required columns in {name}")
# # Load model + encode
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
# embeddings = model.encode(df["question"].fillna('').tolist(), convert_to_tensor=True)
# embeddings2 = model.encode(df2["question"].fillna('').tolist(), convert_to_tensor=True)
# # Define function
# def search_fatwa(query):
# query_embedding = model.encode(query, convert_to_tensor=True)
# scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
# top_idx = int(scores.argmax())
# scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
# top_idx2 = int(scores2.argmax())
# return {
# "question1": df.iloc[top_idx]["question"],
# "link1": df.iloc[top_idx]["link"],
# "question2": df2.iloc[top_idx2]["question"],
# "link2": df2.iloc[top_idx2]["link"],
# }
# # Interface
# iface = gr.Interface(
# fn=search_fatwa,
# inputs="text",
# outputs="json",
# allow_flagging="never",
# title="Fatwa Search (Dual Source)",
# description="Get the most relevant fatwas from both datasets"
# )
# iface.launch()
# import torch
# import pandas as pd
# from sentence_transformers import SentenceTransformer, util
# import gradio as gr
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
# df = pd.read_csv("cleaned1.csv")
# df2 = pd.read_csv("cleaned2.csv")
# embeddings = torch.load("embeddings1.pt")
# embeddings2 = torch.load("embeddings2.pt")
# # def search_fatwa(data):
# # query = data[0] if data else ""
# # query_embedding = model.encode(query, convert_to_tensor=True)
# # top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
# # top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
# # return {
# # "question1": df.iloc[top_idx]["question"],
# # "link1": df.iloc[top_idx]["link"],
# # "question2": df2.iloc[top_idx2]["question"],
# # "link2": df2.iloc[top_idx2]["link"]
# # }
# def search_fatwa(data):
# query = data[0] if isinstance(data, list) else data
# if not query:
# return {"question1": "", "link1": "", "question2": "", "link2": ""}
# query_embedding = model.encode(query, convert_to_tensor=True)
# top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
# top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
# # return {
# # "question1": df.iloc[top_idx]["question"],
# # "link1": df.iloc[top_idx]["link"],
# # "question2": df2.iloc[top_idx2]["question"],
# # "link2": df2.iloc[top_idx2]["link"]
# # }
# result = f"""Question 1: {df.iloc[top_idx]["question"]}
# Link 1: {df.iloc[top_idx]["link"]}
# Question 2: {df2.iloc[top_idx2]["question"]}
# Link 2: {df2.iloc[top_idx2]["link"]}"""
# return result
# iface = gr.Interface(
# fn=search_fatwa,
# inputs=[gr.Textbox(label="text", lines=3)],
# outputs="text" # Changed from "json" to "text"
# )
# # iface = gr.Interface(fn=search_fatwa, inputs=[gr.Textbox(label="text", lines=3)], outputs="json")
# # iface = gr.Interface(
# # fn=predict,
# # inputs=[gr.Textbox(label="text", lines=3)],
# # outputs='text',
# # title=title,
# # )
# iface.launch()
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import gradio as gr
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
df = pd.read_csv("cleaned1.csv")
df2 = pd.read_csv("cleaned2.csv")
df3 = pd.read_csv("cleaned3.csv")
embeddings = torch.load("embeddings1.pt")
embeddings2 = torch.load("embeddings2.pt")
embeddings3 = torch.load("embeddings3.pt")
# Pre-extract DataFrame columns to avoid repeated iloc calls
df_questions = df["question"].values
df_links = df["link"].values
df2_questions = df2["question"].values
df2_links = df2["link"].values
df3_questions = df3["question"].values
df3_links = df3["url"].values
def predict(text):
if not text or text.strip() == "":
return "No query provided"
query_embedding = model.encode(text, convert_to_tensor=True)
# Compute similarity scores
sim_scores1 = util.pytorch_cos_sim(query_embedding, embeddings)[0]
sim_scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0]
# Get top 3 values and indices in one call
top3_scores1, top3_idx1 = sim_scores1.topk(3)
top3_scores2, top3_idx2 = sim_scores2.topk(3)
top3_scores3, top3_idx3 = sim_scores3.topk(3)
# Convert to CPU once
top3_idx1_cpu = top3_idx1.cpu().numpy()
top3_idx2_cpu = top3_idx2.cpu().numpy()
top3_idx3_cpu = top3_idx3.cpu().numpy()
top3_scores1_cpu = top3_scores1.cpu().numpy()
top3_scores2_cpu = top3_scores2.cpu().numpy()
top3_scores3_cpu = top3_scores3.cpu().numpy()
# Prepare results using pre-extracted arrays
results = {
"top1": [
{
"question": df_questions[idx],
"link": df_links[idx],
"score": float(score)
}
for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
],
"top2": [
{
"question": df2_questions[idx],
"link": df2_links[idx],
"score": float(score)
}
for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu)
],
"top3": [
{
"question": df3_questions[idx],
"link": df3_links[idx],
"score": float(score)
}
for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
],
}
return results
# Match the EXACT structure of your working translation app
title = "Search CSV"
iface = gr.Interface(
fn=predict, # Changed from search_fatwa to predict
inputs=[gr.Textbox(label="text", lines=3)],
outputs='json',
title=title,
)
iface.launch()