import lightning as pl
from peft import LoraConfig, inject_adapter_in_model
import torch, os
from ..data.simple_text_image import TextImageDataset
from modelscope.hub.api import HubApi



class LightningModelForT2ILoRA(pl.LightningModule):
    def __init__(
        self,
        learning_rate=1e-4,
        use_gradient_checkpointing=True,
    ):
        super().__init__()
        # Set parameters
        self.learning_rate = learning_rate
        self.use_gradient_checkpointing = use_gradient_checkpointing


    def load_models(self):
        # This function is implemented in other modules
        self.pipe = None


    def freeze_parameters(self):
        # Freeze parameters
        self.pipe.requires_grad_(False)
        self.pipe.eval()
        self.pipe.denoising_model().train()

    
    def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out"):
        # Add LoRA to UNet
        lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_alpha,
            init_lora_weights="gaussian",
            target_modules=lora_target_modules.split(","),
        )
        model = inject_adapter_in_model(lora_config, model)
        for param in model.parameters():
            # Upcast LoRA parameters into fp32
            if param.requires_grad:
                param.data = param.to(torch.float32)


    def training_step(self, batch, batch_idx):
        # Data
        text, image = batch["text"], batch["image"]

        # Prepare input parameters
        self.pipe.device = self.device
        prompt_emb = self.pipe.encode_prompt(text, positive=True)
        latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device))
        noise = torch.randn_like(latents)
        timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,))
        timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device)
        extra_input = self.pipe.prepare_extra_input(latents)
        noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
        training_target = self.pipe.scheduler.training_target(latents, noise, timestep)

        # Compute loss
        noise_pred = self.pipe.denoising_model()(
            noisy_latents, timestep=timestep, **prompt_emb, **extra_input,
            use_gradient_checkpointing=self.use_gradient_checkpointing
        )
        loss = torch.nn.functional.mse_loss(noise_pred, training_target)

        # Record log
        self.log("train_loss", loss, prog_bar=True)
        return loss


    def configure_optimizers(self):
        trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters())
        optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
        return optimizer
    

    def on_save_checkpoint(self, checkpoint):
        checkpoint.clear()
        trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters()))
        trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
        state_dict = self.pipe.denoising_model().state_dict()
        for name, param in state_dict.items():
            if name in trainable_param_names:
                checkpoint[name] = param



def add_general_parsers(parser):
    parser.add_argument(
        "--dataset_path",
        type=str,
        default=None,
        required=True,
        help="The path of the Dataset.",
    )
    parser.add_argument(
        "--output_path",
        type=str,
        default="./",
        help="Path to save the model.",
    )
    parser.add_argument(
        "--steps_per_epoch",
        type=int,
        default=500,
        help="Number of steps per epoch.",
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help="Image height.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=1024,
        help="Image width.",
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="Whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="Batch size (per device) for the training dataloader.",
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
    )
    parser.add_argument(
        "--precision",
        type=str,
        default="16-mixed",
        choices=["32", "16", "16-mixed"],
        help="Training precision",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Learning rate.",
    )
    parser.add_argument(
        "--lora_rank",
        type=int,
        default=4,
        help="The dimension of the LoRA update matrices.",
    )
    parser.add_argument(
        "--lora_alpha",
        type=float,
        default=4.0,
        help="The weight of the LoRA update matrices.",
    )
    parser.add_argument(
        "--use_gradient_checkpointing",
        default=False,
        action="store_true",
        help="Whether to use gradient checkpointing.",
    )
    parser.add_argument(
        "--accumulate_grad_batches",
        type=int,
        default=1,
        help="The number of batches in gradient accumulation.",
    )
    parser.add_argument(
        "--training_strategy",
        type=str,
        default="auto",
        choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
        help="Training strategy",
    )
    parser.add_argument(
        "--max_epochs",
        type=int,
        default=1,
        help="Number of epochs.",
    )
    parser.add_argument(
        "--modelscope_model_id",
        type=str,
        default=None,
        help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.",
    )
    parser.add_argument(
        "--modelscope_access_token",
        type=str,
        default=None,
        help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.",
    )
    return parser


def launch_training_task(model, args):
    # dataset and data loader
    dataset = TextImageDataset(
        args.dataset_path,
        steps_per_epoch=args.steps_per_epoch * args.batch_size,
        height=args.height,
        width=args.width,
        center_crop=args.center_crop,
        random_flip=args.random_flip
    )
    train_loader = torch.utils.data.DataLoader(
        dataset,
        shuffle=True,
        batch_size=args.batch_size,
        num_workers=args.dataloader_num_workers
    )

    # train
    trainer = pl.Trainer(
        max_epochs=args.max_epochs,
        accelerator="gpu",
        devices="auto",
        precision=args.precision,
        strategy=args.training_strategy,
        default_root_dir=args.output_path,
        accumulate_grad_batches=args.accumulate_grad_batches,
        callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
    )
    trainer.fit(model=model, train_dataloaders=train_loader)

    # Upload models
    if args.modelscope_model_id is not None and args.modelscope_access_token is not None:
        print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}")
        with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f:
            f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n')
        api = HubApi()
        api.login(args.modelscope_access_token)
        api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir)