import os, torch, hashlib, json, importlib
from safetensors import safe_open
from torch import Tensor
from typing_extensions import Literal, TypeAlias
from typing import List

from .downloader import download_models, Preset_model_id, Preset_model_website

from .sd_text_encoder import SDTextEncoder
from .sd_unet import SDUNet
from .sd_vae_encoder import SDVAEEncoder
from .sd_vae_decoder import SDVAEDecoder
from .lora import SDLoRAFromCivitai, SDXLLoRAFromCivitai, GeneralLoRAFromPeft

from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sdxl_unet import SDXLUNet
from .sdxl_vae_decoder import SDXLVAEDecoder
from .sdxl_vae_encoder import SDXLVAEEncoder

from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
from .sd3_dit import SD3DiT
from .sd3_vae_decoder import SD3VAEDecoder
from .sd3_vae_encoder import SD3VAEEncoder

from .sd_controlnet import SDControlNet
from .sdxl_controlnet import SDXLControlNetUnion

from .sd_motion import SDMotionModel
from .sdxl_motion import SDXLMotionModel

from .svd_image_encoder import SVDImageEncoder
from .svd_unet import SVDUNet
from .svd_vae_decoder import SVDVAEDecoder
from .svd_vae_encoder import SVDVAEEncoder

from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder

from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from .hunyuan_dit import HunyuanDiT

from .flux_dit import FluxDiT
from .flux_text_encoder import FluxTextEncoder1, FluxTextEncoder2
from .flux_vae import FluxVAEEncoder, FluxVAEDecoder

from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs



def load_state_dict(file_path, torch_dtype=None):
    if file_path.endswith(".safetensors"):
        return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
    else:
        return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)


def load_state_dict_from_safetensors(file_path, torch_dtype=None):
    state_dict = {}
    with safe_open(file_path, framework="pt", device="cpu") as f:
        for k in f.keys():
            state_dict[k] = f.get_tensor(k)
            if torch_dtype is not None:
                state_dict[k] = state_dict[k].to(torch_dtype)
    return state_dict


def load_state_dict_from_bin(file_path, torch_dtype=None):
    state_dict = torch.load(file_path, map_location="cpu")
    if torch_dtype is not None:
        for i in state_dict:
            if isinstance(state_dict[i], torch.Tensor):
                state_dict[i] = state_dict[i].to(torch_dtype)
    return state_dict


def search_for_embeddings(state_dict):
    embeddings = []
    for k in state_dict:
        if isinstance(state_dict[k], torch.Tensor):
            embeddings.append(state_dict[k])
        elif isinstance(state_dict[k], dict):
            embeddings += search_for_embeddings(state_dict[k])
    return embeddings


def search_parameter(param, state_dict):
    for name, param_ in state_dict.items():
        if param.numel() == param_.numel():
            if param.shape == param_.shape:
                if torch.dist(param, param_) < 1e-3:
                    return name
            else:
                if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
                    return name
    return None


def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
    matched_keys = set()
    with torch.no_grad():
        for name in source_state_dict:
            rename = search_parameter(source_state_dict[name], target_state_dict)
            if rename is not None:
                print(f'"{name}": "{rename}",')
                matched_keys.add(rename)
            elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
                length = source_state_dict[name].shape[0] // 3
                rename = []
                for i in range(3):
                    rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
                if None not in rename:
                    print(f'"{name}": {rename},')
                    for rename_ in rename:
                        matched_keys.add(rename_)
    for name in target_state_dict:
        if name not in matched_keys:
            print("Cannot find", name, target_state_dict[name].shape)


def search_for_files(folder, extensions):
    files = []
    if os.path.isdir(folder):
        for file in sorted(os.listdir(folder)):
            files += search_for_files(os.path.join(folder, file), extensions)
    elif os.path.isfile(folder):
        for extension in extensions:
            if folder.endswith(extension):
                files.append(folder)
                break
    return files


def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
    keys = []
    for key, value in state_dict.items():
        if isinstance(key, str):
            if isinstance(value, Tensor):
                if with_shape:
                    shape = "_".join(map(str, list(value.shape)))
                    keys.append(key + ":" + shape)
                keys.append(key)
            elif isinstance(value, dict):
                keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
    keys.sort()
    keys_str = ",".join(keys)
    return keys_str


def split_state_dict_with_prefix(state_dict):
    keys = sorted([key for key in state_dict if isinstance(key, str)])
    prefix_dict = {}
    for key in  keys:
        prefix = key if "." not in key else key.split(".")[0]
        if prefix not in prefix_dict:
            prefix_dict[prefix] = []
        prefix_dict[prefix].append(key)
    state_dicts = []
    for prefix, keys in prefix_dict.items():
        sub_state_dict = {key: state_dict[key] for key in keys}
        state_dicts.append(sub_state_dict)
    return state_dicts


def hash_state_dict_keys(state_dict, with_shape=True):
    keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
    keys_str = keys_str.encode(encoding="UTF-8")
    return hashlib.md5(keys_str).hexdigest()


def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        print(f"    model_name: {model_name} model_class: {model_class.__name__}")
        state_dict_converter = model_class.state_dict_converter()
        if model_resource == "civitai":
            state_dict_results = state_dict_converter.from_civitai(state_dict)
        elif model_resource == "diffusers":
            state_dict_results = state_dict_converter.from_diffusers(state_dict)
        if isinstance(state_dict_results, tuple):
            model_state_dict, extra_kwargs = state_dict_results
            print(f"        This model is initialized with extra kwargs: {extra_kwargs}")
        else:
            model_state_dict, extra_kwargs = state_dict_results, {}
        torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
        model = model_class(**extra_kwargs).to(dtype=torch_dtype, device=device)
        model.load_state_dict(model_state_dict)
        loaded_model_names.append(model_name)
        loaded_models.append(model)
    return loaded_model_names, loaded_models


def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
        if torch_dtype == torch.float16 and hasattr(model, "half"):
            model = model.half()
        model = model.to(device=device)
        loaded_model_names.append(model_name)
        loaded_models.append(model)
    return loaded_model_names, loaded_models


def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
    print(f"    model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
    base_state_dict = base_model.state_dict()
    base_model.to("cpu")
    del base_model
    model = model_class(**extra_kwargs)
    model.load_state_dict(base_state_dict, strict=False)
    model.load_state_dict(state_dict, strict=False)
    model.to(dtype=torch_dtype, device=device)
    return model


def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        while True:
            for model_id in range(len(model_manager.model)):
                base_model_name = model_manager.model_name[model_id]
                if base_model_name == model_name:
                    base_model_path = model_manager.model_path[model_id]
                    base_model = model_manager.model[model_id]
                    print(f"    Adding patch model to {base_model_name} ({base_model_path})")
                    patched_model = load_single_patch_model_from_single_file(
                        state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
                    loaded_model_names.append(base_model_name)
                    loaded_models.append(patched_model)
                    model_manager.model.pop(model_id)
                    model_manager.model_path.pop(model_id)
                    model_manager.model_name.pop(model_id)
                    break
            else:
                break
    return loaded_model_names, loaded_models



class ModelDetectorTemplate:
    def __init__(self):
        pass

    def match(self, file_path="", state_dict={}):
        return False
    
    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        return [], []
    


class ModelDetectorFromSingleFile:
    def __init__(self, model_loader_configs=[]):
        self.keys_hash_with_shape_dict = {}
        self.keys_hash_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
        self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
        if keys_hash is not None:
            self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            return True
        keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
        if keys_hash in self.keys_hash_dict:
            return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)

        # Load models with strict matching
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
            loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
            return loaded_model_names, loaded_models

        # Load models without strict matching
        # (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
        keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
        if keys_hash in self.keys_hash_dict:
            model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
            loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
            return loaded_model_names, loaded_models

        return loaded_model_names, loaded_models



class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
    def __init__(self, model_loader_configs=[]):
        super().__init__(model_loader_configs)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        splited_state_dict = split_state_dict_with_prefix(state_dict)
        for sub_state_dict in splited_state_dict:
            if super().match(file_path, sub_state_dict):
                return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        # Split the state_dict and load from each component
        splited_state_dict = split_state_dict_with_prefix(state_dict)
        valid_state_dict = {}
        for sub_state_dict in splited_state_dict:
            if super().match(file_path, sub_state_dict):
                valid_state_dict.update(sub_state_dict)
        if super().match(file_path, valid_state_dict):
            loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
        else:
            loaded_model_names, loaded_models = [], []
            for sub_state_dict in splited_state_dict:
                if super().match(file_path, sub_state_dict):
                    loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
                    loaded_model_names += loaded_model_names_
                    loaded_models += loaded_models_
        return loaded_model_names, loaded_models
    


class ModelDetectorFromHuggingfaceFolder:
    def __init__(self, model_loader_configs=[]):
        self.architecture_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
        self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)


    def match(self, file_path="", state_dict={}):
        if os.path.isfile(file_path):
            return False
        file_list = os.listdir(file_path)
        if "config.json" not in file_list:
            return False
        with open(os.path.join(file_path, "config.json"), "r") as f:
            config = json.load(f)
        if "architectures" not in config:
            return False
        return True


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        with open(os.path.join(file_path, "config.json"), "r") as f:
            config = json.load(f)
        loaded_model_names, loaded_models = [], []
        for architecture in config["architectures"]:
            huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
            if redirected_architecture is not None:
                architecture = redirected_architecture
            model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
            loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
            loaded_model_names += loaded_model_names_
            loaded_models += loaded_models_
        return loaded_model_names, loaded_models
    


class ModelDetectorFromPatchedSingleFile:
    def __init__(self, model_loader_configs=[]):
        self.keys_hash_with_shape_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
        self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)

        # Load models with strict matching
        loaded_model_names, loaded_models = [], []
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
            loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
                state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
            loaded_model_names += loaded_model_names_
            loaded_models += loaded_models_
        return loaded_model_names, loaded_models



class ModelManager:
    def __init__(
        self,
        torch_dtype=torch.float16,
        device="cuda",
        model_id_list: List[Preset_model_id] = [],
        downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
        file_path_list: List[str] = [],
    ):
        self.torch_dtype = torch_dtype
        self.device = device
        self.model = []
        self.model_path = []
        self.model_name = []
        downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else []
        self.model_detector = [
            ModelDetectorFromSingleFile(model_loader_configs),
            ModelDetectorFromSplitedSingleFile(model_loader_configs),
            ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
            ModelDetectorFromPatchedSingleFile(patch_model_loader_configs),
        ]
        self.load_models(downloaded_files + file_path_list)


    def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
        print(f"Loading models from file: {file_path}")
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following models are loaded: {model_names}.")


    def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
        print(f"Loading models from folder: {file_path}")
        model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following models are loaded: {model_names}.")


    def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
        print(f"Loading patch models from file: {file_path}")
        model_names, models = load_patch_model_from_single_file(
            state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following patched models are loaded: {model_names}.")


    def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
        print(f"Loading LoRA models from file: {file_path}")
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
            for lora in [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), GeneralLoRAFromPeft()]:
                match_results = lora.match(model, state_dict)
                if match_results is not None:
                    print(f"    Adding LoRA to {model_name} ({model_path}).")
                    lora_prefix, model_resource = match_results
                    lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
                    break


    def load_model(self, file_path, model_names=None):
        print(f"Loading models from: {file_path}")
        if os.path.isfile(file_path):
            state_dict = load_state_dict(file_path)
        else:
            state_dict = None
        for model_detector in self.model_detector:
            if model_detector.match(file_path, state_dict):
                model_names, models = model_detector.load(
                    file_path, state_dict,
                    device=self.device, torch_dtype=self.torch_dtype,
                    allowed_model_names=model_names, model_manager=self
                )
                for model_name, model in zip(model_names, models):
                    self.model.append(model)
                    self.model_path.append(file_path)
                    self.model_name.append(model_name)
                print(f"    The following models are loaded: {model_names}.")
                break
        else:
            print(f"    We cannot detect the model type. No models are loaded.")
        

    def load_models(self, file_path_list, model_names=None):
        for file_path in file_path_list:
            self.load_model(file_path, model_names)

    
    def fetch_model(self, model_name, file_path=None, require_model_path=False):
        fetched_models = []
        fetched_model_paths = []
        for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
            if file_path is not None and file_path != model_path:
                continue
            if model_name == model_name_:
                fetched_models.append(model)
                fetched_model_paths.append(model_path)
        if len(fetched_models) == 0:
            print(f"No {model_name} models available.")
            return None
        if len(fetched_models) == 1:
            print(f"Using {model_name} from {fetched_model_paths[0]}.")
        else:
            print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
        if require_model_path:
            return fetched_models[0], fetched_model_paths[0]
        else:
            return fetched_models[0]
        

    def to(self, device):
        for model in self.model:
            model.to(device)