Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import os | |
| import sys | |
| from typing import Any, Mapping, Sequence, Union | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import yaml | |
| from huggingface_hub import hf_hub_download | |
| from PIL import Image | |
| import folder_paths | |
| from nodes import NODE_CLASS_MAPPINGS | |
| # Load available models from HF | |
| hf_hub_download( | |
| repo_id="Phips/2xNomosUni_span_multijpg_ldl", | |
| filename="2xNomosUni_span_multijpg_ldl.safetensors", | |
| local_dir="models/upscale_models", | |
| ) | |
| hf_hub_download( | |
| repo_id="ezioruan/inswapper_128.onnx", | |
| filename="inswapper_128.onnx", | |
| local_dir="models/insightface", | |
| ) | |
| hf_hub_download( | |
| repo_id="ziixzz/codeformer-v0.1.0.pth", | |
| filename="codeformer-v0.1.0.pth", | |
| local_dir="models/facerestore_models", | |
| ) | |
| hf_hub_download( | |
| repo_id="gmk123/GFPGAN", | |
| filename="detection_Resnet50_Final.pth", | |
| local_dir="models/facedetection", | |
| ) | |
| hf_hub_download( | |
| repo_id="gmk123/GFPGAN", | |
| filename="parsing_parsenet.pth", | |
| local_dir="models/facedetection", | |
| ) | |
| hf_hub_download( | |
| repo_id="vladmandic/insightface-faceanalysis", | |
| filename="buffalo_l.zip", | |
| local_dir="models/insightface/models", | |
| ) | |
| hf_hub_download( | |
| repo_id="model2/advance_face_model", | |
| filename="advance_face_model.safetensors", | |
| local_dir="models/reactor/faces", | |
| ) | |
| # ReActor has its own special snowflake installation | |
| os.system("cd custom_nodes/ComfyUI-ReActor && python install.py") | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| import server | |
| from nodes import init_extra_nodes | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| init_extra_nodes() | |
| # Preload nodes, models. | |
| import_custom_nodes() | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| getimagesize = NODE_CLASS_MAPPINGS["GetImageSize+"]() | |
| upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]() | |
| reactorloadfacemodel = NODE_CLASS_MAPPINGS["ReActorLoadFaceModel"]() | |
| FACE_MODEL = reactorloadfacemodel.load_model( | |
| face_model="advance_face_model.safetensors" | |
| ) | |
| imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
| reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() | |
| imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]() | |
| UPSCALE_MODEL = upscalemodelloader.load_model(model_name="2xNomosUni_span_multijpg_ldl.safetensors") | |
| def load_extra_path_config(yaml_path): | |
| with open(yaml_path, "r", encoding="utf-8") as stream: | |
| config = yaml.safe_load(stream) | |
| yaml_dir = os.path.dirname(os.path.abspath(yaml_path)) | |
| for c in config: | |
| conf = config[c] | |
| if conf is None: | |
| continue | |
| base_path = None | |
| if "base_path" in conf: | |
| base_path = conf.pop("base_path") | |
| base_path = os.path.expandvars(os.path.expanduser(base_path)) | |
| if not os.path.isabs(base_path): | |
| base_path = os.path.abspath(os.path.join(yaml_dir, base_path)) | |
| is_default = False | |
| if "is_default" in conf: | |
| is_default = conf.pop("is_default") | |
| for x in conf: | |
| for y in conf[x].split("\n"): | |
| if len(y) == 0: | |
| continue | |
| full_path = y | |
| if base_path: | |
| full_path = os.path.join(base_path, full_path) | |
| elif not os.path.isabs(full_path): | |
| full_path = os.path.abspath(os.path.join(yaml_dir, y)) | |
| normalized_path = os.path.normpath(full_path) | |
| logging.info( | |
| "Adding extra search path {} {}".format(x, normalized_path) | |
| ) | |
| folder_paths.add_model_folder_path(x, normalized_path, is_default) | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directory | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def advance_blur(input_image): | |
| with torch.inference_mode(): | |
| loaded_input_image = loadimage.load_image( | |
| image=input_image, | |
| ) | |
| image_size = getimagesize.execute( | |
| image=get_value_at_index(loaded_input_image, 0), | |
| ) | |
| original_width = get_value_at_index(image_size, 0) | |
| original_height = get_value_at_index(image_size, 1) | |
| resized_input_image = imageresize.execute( | |
| width=2560, | |
| height=2560, | |
| interpolation="bicubic", | |
| method="keep proportion", | |
| condition="downscale if bigger", | |
| multiple_of=0, | |
| image=get_value_at_index(loaded_input_image, 0), | |
| ) | |
| swapped_image = reactorfaceswap.execute( | |
| enabled=True, | |
| swap_model="inswapper_128.onnx", | |
| facedetection="retinaface_resnet50", | |
| face_restore_model="codeformer-v0.1.0.pth", | |
| face_restore_visibility=1, | |
| codeformer_weight=1, | |
| detect_gender_input="no", | |
| detect_gender_source="no", | |
| input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99", | |
| source_faces_index="0", | |
| console_log_level=2, | |
| input_image=get_value_at_index(resized_input_image, 0), | |
| face_model=get_value_at_index(FACE_MODEL, 0), | |
| ) | |
| upscaled_image = imageupscalewithmodel.upscale( | |
| upscale_model=get_value_at_index(UPSCALE_MODEL, 0), | |
| image=get_value_at_index(swapped_image, 0), | |
| ) | |
| final_image = imageresize.execute( | |
| width=original_width, | |
| height=original_height, | |
| interpolation="lanczos", | |
| method="keep proportion", | |
| condition="downscale if bigger", | |
| multiple_of=0, | |
| image=get_value_at_index(upscaled_image, 0), | |
| ) | |
| img = Image.fromarray( | |
| np.clip( | |
| (255.0 * get_value_at_index(final_image, 0)[0].cpu().numpy()), 0, 255 | |
| ).astype(np.uint8) | |
| ) | |
| outpath = f"advance-blurred-{os.urandom(16).hex()}.jpg" | |
| img.save(outpath, quality=80, dpi=(72, 72)) | |
| return outpath | |
| if __name__ == "__main__": | |
| # Updated, more flexible CSS | |
| css_code = "" | |
| with gr.Blocks(css=css_code, theme=gr.themes.Base()) as app: | |
| gr.Markdown("# 🥸 Advance Blur") | |
| with gr.Accordion("More info", open=False): | |
| gr.Markdown( | |
| """ | |
| **Advance Blur** is an anonymization tool that leverages a sophisticated | |
| technique known as "Vance Blurring" to enhance privacy for your images. | |
| **Features:** | |
| - **Blur Faces**: Automatically detects and replaces faces with the image of the ideal American male. | |
| - **Enhance Privacy:** Removes sensitive information from images (GPS, EXIF, etc.) | |
| - **Safe and secure:** No data is stored long-term or shared with others. System is fully reset on a regular basis. | |
| **Disclaimer:** | |
| Advance Blur is intended for entertainment purposes only. Any resemblance | |
| to actual persons is entirely coincidental, karmic, and comedic (as a decent parody | |
| should). | |
| Advance Blur only seeks to perfect images using the depiction of the ideal American male. | |
| **Instructions:** | |
| 1. Upload your image. | |
| 2. Click the "Submit" button to apply "Vance Blurring" to your image. | |
| 3. Download the blurred image by long-clicking on it to Copy, or tap down-arrow to Save. | |
| 4. Share the image with your friends and family, feeling confident in your privacy! | |
| **Tips:** | |
| - For best results, use high-quality images at medium-ranges. | |
| - Works best when faces are front-facing and well-lit. | |
| - Always check the final image before sharing. | |
| """ | |
| ) | |
| with gr.Row(max_height=500): | |
| gr.Image( | |
| value="before.jpg", | |
| label="Before", | |
| show_label=True, | |
| interactive=False, | |
| ) | |
| gr.Image( | |
| value="after.jpg", | |
| label="After", | |
| show_label=True, | |
| interactive=False, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| type="filepath", | |
| label="Upload Your Image", | |
| elem_id="fixed-image-size", | |
| show_label=True, | |
| ) | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image( | |
| label="\"Vance Blurred\" Result", | |
| elem_id="fixed-image-size", | |
| show_label=True, | |
| ) | |
| # Trigger your blur function | |
| submit_btn.click(fn=advance_blur, inputs=[input_image], outputs=[output_image]) | |
| # Launch the app | |
| app.launch(share=True) | |