Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import torchaudio | |
| import torch | |
| import comfy.model_management | |
| import folder_paths | |
| import os | |
| import io | |
| import json | |
| import struct | |
| import random | |
| import hashlib | |
| import node_helpers | |
| from comfy.cli_args import args | |
| from comfy.comfy_types import FileLocator | |
| class EmptyLatentAudio: | |
| def __init__(self): | |
| self.device = comfy.model_management.intermediate_device() | |
| def INPUT_TYPES(s): | |
| return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), | |
| }} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/audio" | |
| def generate(self, seconds, batch_size): | |
| length = round((seconds * 44100 / 2048) / 2) * 2 | |
| latent = torch.zeros([batch_size, 64, length], device=self.device) | |
| return ({"samples":latent, "type": "audio"}, ) | |
| class ConditioningStableAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), | |
| "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING","CONDITIONING") | |
| RETURN_NAMES = ("positive", "negative") | |
| FUNCTION = "append" | |
| CATEGORY = "conditioning" | |
| def append(self, positive, negative, seconds_start, seconds_total): | |
| positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) | |
| negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) | |
| return (positive, negative) | |
| class VAEEncodeAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "encode" | |
| CATEGORY = "latent/audio" | |
| def encode(self, vae, audio): | |
| sample_rate = audio["sample_rate"] | |
| if 44100 != sample_rate: | |
| waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) | |
| else: | |
| waveform = audio["waveform"] | |
| t = vae.encode(waveform.movedim(1, -1)) | |
| return ({"samples":t}, ) | |
| class VAEDecodeAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} | |
| RETURN_TYPES = ("AUDIO",) | |
| FUNCTION = "decode" | |
| CATEGORY = "latent/audio" | |
| def decode(self, vae, samples): | |
| audio = vae.decode(samples["samples"]).movedim(-1, 1) | |
| std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 | |
| std[std < 1.0] = 1.0 | |
| audio /= std | |
| return ({"waveform": audio, "sample_rate": 44100}, ) | |
| def create_vorbis_comment_block(comment_dict, last_block): | |
| vendor_string = b'ComfyUI' | |
| vendor_length = len(vendor_string) | |
| comments = [] | |
| for key, value in comment_dict.items(): | |
| comment = f"{key}={value}".encode('utf-8') | |
| comments.append(struct.pack('<I', len(comment)) + comment) | |
| user_comment_list_length = len(comments) | |
| user_comments = b''.join(comments) | |
| comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments | |
| if last_block: | |
| id = b'\x84' | |
| else: | |
| id = b'\x04' | |
| comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data | |
| return comment_block | |
| def insert_or_replace_vorbis_comment(flac_io, comment_dict): | |
| if len(comment_dict) == 0: | |
| return flac_io | |
| flac_io.seek(4) | |
| blocks = [] | |
| last_block = False | |
| while not last_block: | |
| header = flac_io.read(4) | |
| last_block = (header[0] & 0x80) != 0 | |
| block_type = header[0] & 0x7F | |
| block_length = struct.unpack('>I', b'\x00' + header[1:])[0] | |
| block_data = flac_io.read(block_length) | |
| if block_type == 4 or block_type == 1: | |
| pass | |
| else: | |
| header = bytes([(header[0] & (~0x80))]) + header[1:] | |
| blocks.append(header + block_data) | |
| blocks.append(create_vorbis_comment_block(comment_dict, last_block=True)) | |
| new_flac_io = io.BytesIO() | |
| new_flac_io.write(b'fLaC') | |
| for block in blocks: | |
| new_flac_io.write(block) | |
| new_flac_io.write(flac_io.read()) | |
| return new_flac_io | |
| class SaveAudio: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), | |
| "filename_prefix": ("STRING", {"default": "audio/ComfyUI"})}, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save_audio" | |
| OUTPUT_NODE = True | |
| CATEGORY = "audio" | |
| def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): | |
| filename_prefix += self.prefix_append | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
| results: list[FileLocator] = [] | |
| metadata = {} | |
| if not args.disable_metadata: | |
| if prompt is not None: | |
| metadata["prompt"] = json.dumps(prompt) | |
| if extra_pnginfo is not None: | |
| for x in extra_pnginfo: | |
| metadata[x] = json.dumps(extra_pnginfo[x]) | |
| for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): | |
| filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
| file = f"{filename_with_batch_num}_{counter:05}_.flac" | |
| buff = io.BytesIO() | |
| torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC") | |
| buff = insert_or_replace_vorbis_comment(buff, metadata) | |
| with open(os.path.join(full_output_folder, file), 'wb') as f: | |
| f.write(buff.getbuffer()) | |
| results.append({ | |
| "filename": file, | |
| "subfolder": subfolder, | |
| "type": self.type | |
| }) | |
| counter += 1 | |
| return { "ui": { "audio": results } } | |
| class PreviewAudio(SaveAudio): | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_temp_directory() | |
| self.type = "temp" | |
| self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"audio": ("AUDIO", ), }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| class LoadAudio: | |
| def INPUT_TYPES(s): | |
| input_dir = folder_paths.get_input_directory() | |
| files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) | |
| return {"required": {"audio": (sorted(files), {"audio_upload": True})}} | |
| CATEGORY = "audio" | |
| RETURN_TYPES = ("AUDIO", ) | |
| FUNCTION = "load" | |
| def load(self, audio): | |
| audio_path = folder_paths.get_annotated_filepath(audio) | |
| waveform, sample_rate = torchaudio.load(audio_path) | |
| audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} | |
| return (audio, ) | |
| def IS_CHANGED(s, audio): | |
| image_path = folder_paths.get_annotated_filepath(audio) | |
| m = hashlib.sha256() | |
| with open(image_path, 'rb') as f: | |
| m.update(f.read()) | |
| return m.digest().hex() | |
| def VALIDATE_INPUTS(s, audio): | |
| if not folder_paths.exists_annotated_filepath(audio): | |
| return "Invalid audio file: {}".format(audio) | |
| return True | |
| NODE_CLASS_MAPPINGS = { | |
| "EmptyLatentAudio": EmptyLatentAudio, | |
| "VAEEncodeAudio": VAEEncodeAudio, | |
| "VAEDecodeAudio": VAEDecodeAudio, | |
| "SaveAudio": SaveAudio, | |
| "LoadAudio": LoadAudio, | |
| "PreviewAudio": PreviewAudio, | |
| "ConditioningStableAudio": ConditioningStableAudio, | |
| } | |