Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import nodes | |
| import comfy.utils | |
| def camera_embeddings(elevation, azimuth): | |
| elevation = torch.as_tensor([elevation]) | |
| azimuth = torch.as_tensor([azimuth]) | |
| embeddings = torch.stack( | |
| [ | |
| torch.deg2rad( | |
| (90 - elevation) - (90) | |
| ), # Zero123 polar is 90-elevation | |
| torch.sin(torch.deg2rad(azimuth)), | |
| torch.cos(torch.deg2rad(azimuth)), | |
| torch.deg2rad( | |
| 90 - torch.full_like(elevation, 0) | |
| ), | |
| ], dim=-1).unsqueeze(1) | |
| return embeddings | |
| class StableZero123_Conditioning: | |
| def INPUT_TYPES(s): | |
| return {"required": { "clip_vision": ("CLIP_VISION",), | |
| "init_image": ("IMAGE",), | |
| "vae": ("VAE",), | |
| "width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
| "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| FUNCTION = "encode" | |
| CATEGORY = "conditioning/3d_models" | |
| def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth): | |
| output = clip_vision.encode_image(init_image) | |
| pooled = output.image_embeds.unsqueeze(0) | |
| pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
| encode_pixels = pixels[:,:,:,:3] | |
| t = vae.encode(encode_pixels) | |
| cam_embeds = camera_embeddings(elevation, azimuth) | |
| cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1) | |
| positive = [[cond, {"concat_latent_image": t}]] | |
| negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] | |
| latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
| return (positive, negative, {"samples":latent}) | |
| class StableZero123_Conditioning_Batched: | |
| def INPUT_TYPES(s): | |
| return {"required": { "clip_vision": ("CLIP_VISION",), | |
| "init_image": ("IMAGE",), | |
| "vae": ("VAE",), | |
| "width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
| "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| "elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| "azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| FUNCTION = "encode" | |
| CATEGORY = "conditioning/3d_models" | |
| def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment): | |
| output = clip_vision.encode_image(init_image) | |
| pooled = output.image_embeds.unsqueeze(0) | |
| pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
| encode_pixels = pixels[:,:,:,:3] | |
| t = vae.encode(encode_pixels) | |
| cam_embeds = [] | |
| for i in range(batch_size): | |
| cam_embeds.append(camera_embeddings(elevation, azimuth)) | |
| elevation += elevation_batch_increment | |
| azimuth += azimuth_batch_increment | |
| cam_embeds = torch.cat(cam_embeds, dim=0) | |
| cond = torch.cat([comfy.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1) | |
| positive = [[cond, {"concat_latent_image": t}]] | |
| negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] | |
| latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
| return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size}) | |
| class SV3D_Conditioning: | |
| def INPUT_TYPES(s): | |
| return {"required": { "clip_vision": ("CLIP_VISION",), | |
| "init_image": ("IMAGE",), | |
| "vae": ("VAE",), | |
| "width": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "video_frames": ("INT", {"default": 21, "min": 1, "max": 4096}), | |
| "elevation": ("FLOAT", {"default": 0.0, "min": -90.0, "max": 90.0, "step": 0.1, "round": False}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| FUNCTION = "encode" | |
| CATEGORY = "conditioning/3d_models" | |
| def encode(self, clip_vision, init_image, vae, width, height, video_frames, elevation): | |
| output = clip_vision.encode_image(init_image) | |
| pooled = output.image_embeds.unsqueeze(0) | |
| pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
| encode_pixels = pixels[:,:,:,:3] | |
| t = vae.encode(encode_pixels) | |
| azimuth = 0 | |
| azimuth_increment = 360 / (max(video_frames, 2) - 1) | |
| elevations = [] | |
| azimuths = [] | |
| for i in range(video_frames): | |
| elevations.append(elevation) | |
| azimuths.append(azimuth) | |
| azimuth += azimuth_increment | |
| positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]] | |
| negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t), "elevation": elevations, "azimuth": azimuths}]] | |
| latent = torch.zeros([video_frames, 4, height // 8, width // 8]) | |
| return (positive, negative, {"samples":latent}) | |
| NODE_CLASS_MAPPINGS = { | |
| "StableZero123_Conditioning": StableZero123_Conditioning, | |
| "StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched, | |
| "SV3D_Conditioning": SV3D_Conditioning, | |
| } | |