Spaces:
Running
on
Zero
Running
on
Zero
| import datetime | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import pytest | |
| from pytest import fixture | |
| from typing import Tuple, List | |
| from cv2 import imread, cvtColor, COLOR_BGR2RGB | |
| from skimage.metrics import structural_similarity as ssim | |
| """ | |
| This test suite compares images in 2 directories by file name | |
| The directories are specified by the command line arguments --baseline_dir and --test_dir | |
| """ | |
| # ssim: Structural Similarity Index | |
| # Returns a tuple of (ssim, diff_image) | |
| def ssim_score(img0: np.ndarray, img1: np.ndarray) -> Tuple[float, np.ndarray]: | |
| score, diff = ssim(img0, img1, channel_axis=-1, full=True) | |
| # rescale the difference image to 0-255 range | |
| diff = (diff * 255).astype("uint8") | |
| return score, diff | |
| # Metrics must return a tuple of (score, diff_image) | |
| METRICS = {"ssim": ssim_score} | |
| METRICS_PASS_THRESHOLD = {"ssim": 0.95} | |
| class TestCompareImageMetrics: | |
| def test_file_names(self, args_pytest): | |
| test_dir = args_pytest['test_dir'] | |
| fnames = self.gather_file_basenames(test_dir) | |
| yield fnames | |
| del fnames | |
| def teardown(self, args_pytest): | |
| yield | |
| # Runs after all tests are complete | |
| # Aggregate output files into a grid of images | |
| baseline_dir = args_pytest['baseline_dir'] | |
| test_dir = args_pytest['test_dir'] | |
| img_output_dir = args_pytest['img_output_dir'] | |
| metrics_file = args_pytest['metrics_file'] | |
| grid_dir = os.path.join(img_output_dir, "grid") | |
| os.makedirs(grid_dir, exist_ok=True) | |
| for metric_dir in METRICS.keys(): | |
| metric_path = os.path.join(img_output_dir, metric_dir) | |
| for file in os.listdir(metric_path): | |
| if file.endswith(".png"): | |
| score = self.lookup_score_from_fname(file, metrics_file) | |
| image_file_list = [] | |
| image_file_list.append([ | |
| os.path.join(baseline_dir, file), | |
| os.path.join(test_dir, file), | |
| os.path.join(metric_path, file) | |
| ]) | |
| # Create grid | |
| image_list = [[Image.open(file) for file in files] for files in image_file_list] | |
| grid = self.image_grid(image_list) | |
| grid.save(os.path.join(grid_dir, f"{metric_dir}_{score:.3f}_{file}")) | |
| # Tests run for each baseline file name | |
| def fname(self, baseline_fname): | |
| yield baseline_fname | |
| del baseline_fname | |
| def test_directories_not_empty(self, args_pytest): | |
| baseline_dir = args_pytest['baseline_dir'] | |
| test_dir = args_pytest['test_dir'] | |
| assert len(os.listdir(baseline_dir)) != 0, f"Baseline directory {baseline_dir} is empty" | |
| assert len(os.listdir(test_dir)) != 0, f"Test directory {test_dir} is empty" | |
| def test_dir_has_all_matching_metadata(self, fname, test_file_names, args_pytest): | |
| # Check that all files in baseline_dir have a file in test_dir with matching metadata | |
| baseline_file_path = os.path.join(args_pytest['baseline_dir'], fname) | |
| file_paths = [os.path.join(args_pytest['test_dir'], f) for f in test_file_names] | |
| file_match = self.find_file_match(baseline_file_path, file_paths) | |
| assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}" | |
| # For a baseline image file, finds the corresponding file name in test_dir and | |
| # compares the images using the metrics in METRICS | |
| def test_pipeline_compare( | |
| self, | |
| args_pytest, | |
| fname, | |
| test_file_names, | |
| metric, | |
| ): | |
| baseline_dir = args_pytest['baseline_dir'] | |
| test_dir = args_pytest['test_dir'] | |
| metrics_output_file = args_pytest['metrics_file'] | |
| img_output_dir = args_pytest['img_output_dir'] | |
| baseline_file_path = os.path.join(baseline_dir, fname) | |
| # Find file match | |
| file_paths = [os.path.join(test_dir, f) for f in test_file_names] | |
| test_file = self.find_file_match(baseline_file_path, file_paths) | |
| # Run metrics | |
| sample_baseline = self.read_img(baseline_file_path) | |
| sample_secondary = self.read_img(test_file) | |
| score, metric_img = METRICS[metric](sample_baseline, sample_secondary) | |
| metric_status = score > METRICS_PASS_THRESHOLD[metric] | |
| # Save metric values | |
| with open(metrics_output_file, 'a') as f: | |
| run_info = os.path.splitext(fname)[0] | |
| metric_status_str = "PASS ✅" if metric_status else "FAIL ❌" | |
| date_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| f.write(f"| {date_str} | {run_info} | {metric} | {metric_status_str} | {score} | \n") | |
| # Save metric image | |
| metric_img_dir = os.path.join(img_output_dir, metric) | |
| os.makedirs(metric_img_dir, exist_ok=True) | |
| output_filename = f'{fname}' | |
| Image.fromarray(metric_img).save(os.path.join(metric_img_dir, output_filename)) | |
| assert score > METRICS_PASS_THRESHOLD[metric] | |
| def read_img(self, filename: str) -> np.ndarray: | |
| cvImg = imread(filename) | |
| cvImg = cvtColor(cvImg, COLOR_BGR2RGB) | |
| return cvImg | |
| def image_grid(self, img_list: list[list[Image.Image]]): | |
| # imgs is a 2D list of images | |
| # Assumes the input images are a rectangular grid of equal sized images | |
| rows = len(img_list) | |
| cols = len(img_list[0]) | |
| w, h = img_list[0][0].size | |
| grid = Image.new('RGB', size=(cols*w, rows*h)) | |
| for i, row in enumerate(img_list): | |
| for j, img in enumerate(row): | |
| grid.paste(img, box=(j*w, i*h)) | |
| return grid | |
| def lookup_score_from_fname(self, | |
| fname: str, | |
| metrics_output_file: str | |
| ) -> float: | |
| fname_basestr = os.path.splitext(fname)[0] | |
| with open(metrics_output_file, 'r') as f: | |
| for line in f: | |
| if fname_basestr in line: | |
| score = float(line.split('|')[5]) | |
| return score | |
| raise ValueError(f"Could not find score for {fname} in {metrics_output_file}") | |
| def gather_file_basenames(self, directory: str): | |
| files = [] | |
| for file in os.listdir(directory): | |
| if file.endswith(".png"): | |
| files.append(file) | |
| return files | |
| def read_file_prompt(self, fname:str) -> str: | |
| # Read prompt from image file metadata | |
| img = Image.open(fname) | |
| img.load() | |
| return img.info['prompt'] | |
| def find_file_match(self, baseline_file: str, file_paths: List[str]): | |
| # Find a file in file_paths with matching metadata to baseline_file | |
| baseline_prompt = self.read_file_prompt(baseline_file) | |
| # Do not match empty prompts | |
| if baseline_prompt is None or baseline_prompt == "": | |
| return None | |
| # Find file match | |
| # Reorder test_file_names so that the file with matching name is first | |
| # This is an optimization because matching file names are more likely | |
| # to have matching metadata if they were generated with the same script | |
| basename = os.path.basename(baseline_file) | |
| file_path_basenames = [os.path.basename(f) for f in file_paths] | |
| if basename in file_path_basenames: | |
| match_index = file_path_basenames.index(basename) | |
| file_paths.insert(0, file_paths.pop(match_index)) | |
| for f in file_paths: | |
| test_file_prompt = self.read_file_prompt(f) | |
| if baseline_prompt == test_file_prompt: | |
| return f | |