Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.autograd import Function | |
| from torch.nn.utils.spectral_norm import spectral_norm | |
| class BlurFunctionBackward(Function): | |
| def forward(ctx, grad_output, kernel, kernel_flip): | |
| ctx.save_for_backward(kernel, kernel_flip) | |
| grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1]) | |
| return grad_input | |
| def backward(ctx, gradgrad_output): | |
| kernel, _ = ctx.saved_tensors | |
| grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1]) | |
| return grad_input, None, None | |
| class BlurFunction(Function): | |
| def forward(ctx, x, kernel, kernel_flip): | |
| ctx.save_for_backward(kernel, kernel_flip) | |
| output = F.conv2d(x, kernel, padding=1, groups=x.shape[1]) | |
| return output | |
| def backward(ctx, grad_output): | |
| kernel, kernel_flip = ctx.saved_tensors | |
| grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip) | |
| return grad_input, None, None | |
| blur = BlurFunction.apply | |
| class Blur(nn.Module): | |
| def __init__(self, channel): | |
| super().__init__() | |
| kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32) | |
| kernel = kernel.view(1, 1, 3, 3) | |
| kernel = kernel / kernel.sum() | |
| kernel_flip = torch.flip(kernel, [2, 3]) | |
| self.kernel = kernel.repeat(channel, 1, 1, 1) | |
| self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1) | |
| def forward(self, x): | |
| return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x)) | |
| def calc_mean_std(feat, eps=1e-5): | |
| """Calculate mean and std for adaptive_instance_normalization. | |
| Args: | |
| feat (Tensor): 4D tensor. | |
| eps (float): A small value added to the variance to avoid | |
| divide-by-zero. Default: 1e-5. | |
| """ | |
| size = feat.size() | |
| assert len(size) == 4, 'The input feature should be 4D tensor.' | |
| n, c = size[:2] | |
| feat_var = feat.view(n, c, -1).var(dim=2) + eps | |
| feat_std = feat_var.sqrt().view(n, c, 1, 1) | |
| feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1) | |
| return feat_mean, feat_std | |
| def adaptive_instance_normalization(content_feat, style_feat): | |
| """Adaptive instance normalization. | |
| Adjust the reference features to have the similar color and illuminations | |
| as those in the degradate features. | |
| Args: | |
| content_feat (Tensor): The reference feature. | |
| style_feat (Tensor): The degradate features. | |
| """ | |
| size = content_feat.size() | |
| style_mean, style_std = calc_mean_std(style_feat) | |
| content_mean, content_std = calc_mean_std(content_feat) | |
| normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
| return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
| def AttentionBlock(in_channel): | |
| return nn.Sequential( | |
| spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), | |
| spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1))) | |
| def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True): | |
| """Conv block used in MSDilationBlock.""" | |
| return nn.Sequential( | |
| spectral_norm( | |
| nn.Conv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| padding=((kernel_size - 1) // 2) * dilation, | |
| bias=bias)), | |
| nn.LeakyReLU(0.2), | |
| spectral_norm( | |
| nn.Conv2d( | |
| out_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| padding=((kernel_size - 1) // 2) * dilation, | |
| bias=bias)), | |
| ) | |
| class MSDilationBlock(nn.Module): | |
| """Multi-scale dilation block.""" | |
| def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True): | |
| super(MSDilationBlock, self).__init__() | |
| self.conv_blocks = nn.ModuleList() | |
| for i in range(4): | |
| self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias)) | |
| self.conv_fusion = spectral_norm( | |
| nn.Conv2d( | |
| in_channels * 4, | |
| in_channels, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| bias=bias)) | |
| def forward(self, x): | |
| out = [] | |
| for i in range(4): | |
| out.append(self.conv_blocks[i](x)) | |
| out = torch.cat(out, 1) | |
| out = self.conv_fusion(out) + x | |
| return out | |
| class UpResBlock(nn.Module): | |
| def __init__(self, in_channel): | |
| super(UpResBlock, self).__init__() | |
| self.body = nn.Sequential( | |
| nn.Conv2d(in_channel, in_channel, 3, 1, 1), | |
| nn.LeakyReLU(0.2, True), | |
| nn.Conv2d(in_channel, in_channel, 3, 1, 1), | |
| ) | |
| def forward(self, x): | |
| out = x + self.body(x) | |
| return out | |