Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| from typing import Any, Mapping, Sequence, Union | |
| import gradio as gr | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from nodes import NODE_CLASS_MAPPINGS | |
| import spaces | |
| from comfy import model_management | |
| #modify the duration for the average it takes for your worflow to run, in seconds | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| Raises: | |
| IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directory | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| try: | |
| from app import load_extra_path_config | |
| except ImportError: | |
| print("Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead.") | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| init_extra_nodes() | |
| def advance_blur(input_image): | |
| import_custom_nodes() | |
| with torch.inference_mode(): | |
| load_images_node = NODE_CLASS_MAPPINGS["LoadImagesFromFolderKJ"]() | |
| source_images_batch = load_images_node.load_images( | |
| folder="source_faces/", | |
| width=1024, | |
| height=1024, | |
| keep_aspect_ratio="crop", | |
| image_load_cap=0, | |
| start_index=0, | |
| include_subfolders=False, | |
| ) | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| loaded_input_image = loadimage.load_image( | |
| image=input_image, | |
| ) | |
| upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]() | |
| upscale_model = upscalemodelloader.load_model( | |
| model_name="4x_NMKD-Siax_200k.pth" | |
| ) | |
| reactorbuildfacemodel = NODE_CLASS_MAPPINGS["ReActorBuildFaceModel"]() | |
| imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
| reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() | |
| imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]() | |
| saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
| for q in range(1): | |
| face_model = reactorbuildfacemodel.blend_faces( | |
| save_mode=True, | |
| send_only=False, | |
| face_model_name="default", | |
| compute_method="Mean", | |
| images=get_value_at_index(source_images_batch, 0), | |
| ) | |
| resized_input_image = imageresize.execute( | |
| width=2560, | |
| height=2560, | |
| interpolation="bicubic", | |
| method="keep proportion", | |
| condition="downscale if bigger", | |
| multiple_of=0, | |
| image=get_value_at_index(loaded_input_image, 0), | |
| ) | |
| swapped_image = reactorfaceswap.execute( | |
| enabled=True, | |
| swap_model="inswapper_128.onnx", | |
| facedetection="retinaface_resnet50", | |
| face_restore_model="codeformer-v0.1.0.pth", | |
| face_restore_visibility=1, | |
| codeformer_weight=1, | |
| detect_gender_input="no", | |
| detect_gender_source="no", | |
| input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99", | |
| source_faces_index="0", | |
| console_log_level=2, | |
| input_image=get_value_at_index(resized_input_image, 0), | |
| face_model=get_value_at_index(face_model, 0), | |
| ) | |
| upscaled_image = imageupscalewithmodel.upscale( | |
| upscale_model=get_value_at_index(upscale_model, 0), | |
| image=get_value_at_index(swapped_image, 0), | |
| ) | |
| final_image = imageresize.execute( | |
| width=2560, | |
| height=2560, | |
| interpolation="lanczos", | |
| method="keep proportion", | |
| condition="downscale if bigger", | |
| multiple_of=0, | |
| image=get_value_at_index(upscaled_image, 0), | |
| ) | |
| saved_image = saveimage.save_images( | |
| filename_prefix="advance_blur", | |
| images=get_value_at_index(final_image, 0), | |
| ) | |
| saved_path = f"output/{saved_image['ui']['images'][0]['filename']}" | |
| return saved_path | |
| if __name__ == "__main__": | |
| # Start your Gradio app | |
| with gr.Blocks() as app: | |
| # Add a title | |
| gr.Markdown("# Advance Blur") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="filepath") | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| # The output image | |
| output_image = gr.Image(label="Generated Image") | |
| # When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
| # and the output an image | |
| generate_btn.click( | |
| fn=advance_blur, | |
| inputs=[input_image], | |
| outputs=[output_image] | |
| ) | |
| app.launch(share=True) | |