|
import re |
|
import gradio as gr |
|
from llama_cpp import Llama |
|
|
|
model = "ggml-org/gemma-3-1b-it-GGUF" |
|
llm = Llama.from_pretrained( |
|
repo_id=model, |
|
filename="gemma-3-1b-it-Q8_0.gguf", |
|
verbose=True, |
|
use_mmap=True, |
|
use_mlock=True, |
|
n_threads=4, |
|
n_threads_batch=4, |
|
n_ctx=8000, |
|
) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
if len(system_message) > 0: |
|
messages = [{"role": "system", "content": system_message}] |
|
else: |
|
messages = [] |
|
|
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
completion = llm.create_chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
|
|
for message in completion: |
|
delta = message['choices'][0]['delta'] |
|
if 'content' in delta: |
|
response += delta['content'] |
|
formatted_response = re.sub(r"<think>\s*(.*?)\s*</think>", r"*\1*", response, flags=re.DOTALL) |
|
yield formatted_response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="", |
|
label="System message", |
|
), |
|
gr.Slider(minimum=200, maximum=100000, value=4000, step=100, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
description=model, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|