chatbot / app.py
mobinln's picture
use gemma 3 1b
f67587b verified
import re
import gradio as gr
from llama_cpp import Llama
model = "ggml-org/gemma-3-1b-it-GGUF"
llm = Llama.from_pretrained(
repo_id=model,
filename="gemma-3-1b-it-Q8_0.gguf",
verbose=True,
use_mmap=True,
use_mlock=True,
n_threads=4,
n_threads_batch=4,
n_ctx=8000,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if len(system_message) > 0:
messages = [{"role": "system", "content": system_message}]
else:
messages = []
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
completion = llm.create_chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p
)
for message in completion:
delta = message['choices'][0]['delta']
if 'content' in delta:
response += delta['content']
formatted_response = re.sub(r"<think>\s*(.*?)\s*</think>", r"*\1*", response, flags=re.DOTALL)
yield formatted_response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="",
label="System message",
),
gr.Slider(minimum=200, maximum=100000, value=4000, step=100, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description=model,
)
if __name__ == "__main__":
demo.launch()