Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
-
import zipfile
|
5 |
-
import os
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
extracted_dir = "./trained_model"
|
12 |
-
|
13 |
-
# Extract the contents of the zip file
|
14 |
-
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
15 |
-
zip_ref.extractall(extracted_dir)
|
16 |
-
|
17 |
-
# Load the saved model and tokenizer
|
18 |
-
#tokenizer = AutoTokenizer.from_pretrained(extracted_dir)
|
19 |
-
#model = AutoModelForSequenceClassification.from_pretrained(extracted_dir)
|
20 |
|
21 |
# Define the device to run inference on (GPU if available, otherwise CPU)
|
22 |
-
|
23 |
|
24 |
# Move the model to the device
|
25 |
-
|
26 |
|
27 |
|
28 |
|
29 |
# Define function for sentiment analysis
|
30 |
def predict_sentiment(review):
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
return
|
55 |
|
56 |
|
57 |
# Create Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
+
# Load the model from the Hugging Face Model Hub
|
6 |
+
model_name = "moazx/AraBERT-Restaurant-Sentiment"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Define the device to run inference on (GPU if available, otherwise CPU)
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
# Move the model to the device
|
14 |
+
model.to(device)
|
15 |
|
16 |
|
17 |
|
18 |
# Define function for sentiment analysis
|
19 |
def predict_sentiment(review):
|
20 |
+
# Step 1: Tokenization
|
21 |
+
encoded_text = tokenizer(
|
22 |
+
review, padding=True, truncation=True, max_length=256, return_tensors="pt"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Move input tensors to the appropriate device
|
26 |
+
input_ids = encoded_text["input_ids"].to(device)
|
27 |
+
attention_mask = encoded_text["attention_mask"].to(device)
|
28 |
+
|
29 |
+
# Step 2: Inference
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
32 |
+
|
33 |
+
# Step 3: Prediction with probabilities
|
34 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
35 |
+
probs = (
|
36 |
+
probs.squeeze().cpu().numpy()
|
37 |
+
) # Convert to numpy array and remove the batch dimension
|
38 |
+
|
39 |
+
# Map predicted class index to label
|
40 |
+
label_map = {0: 'سلبي', 1: 'إيجابي'}
|
41 |
+
|
42 |
+
output_dict = {label_map[i]: float(probs[i]) for i in range(len(probs))}
|
43 |
+
return output_dict
|
44 |
|
45 |
|
46 |
# Create Gradio interface
|