Spaces:
Build error
Build error
adding video logic
Browse files- .gitattributes +1 -0
- .gitignore +3 -0
- README.md +1 -1
- app.py +423 -126
- requirements.txt +4 -1
- video.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ruff_cache
|
| 2 |
+
.venv
|
| 3 |
+
static
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🌖
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: indigo
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Real Time Object Detection wtih D-Fine
|
| 3 |
emoji: 🌖
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: indigo
|
app.py
CHANGED
|
@@ -1,45 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from transformers.image_utils import load_image
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
def detect_objects(image, checkpoint, confidence_threshold=0.3, use_url=False, url=""):
|
| 22 |
-
pipe = pipeline(
|
| 23 |
-
"object-detection",
|
| 24 |
-
model=checkpoint,
|
| 25 |
-
image_processor=checkpoint,
|
| 26 |
-
device="cpu",
|
| 27 |
-
)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
if use_url and url:
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
elif image is not None:
|
|
|
|
|
|
|
|
|
|
| 32 |
input_image = image
|
| 33 |
else:
|
| 34 |
-
return None, gr.Markdown(
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
img_width, img_height = input_image.size
|
| 41 |
|
| 42 |
-
# Prepare annotations in the format: list of (bounding_box, label)
|
| 43 |
annotations = []
|
| 44 |
for result in results:
|
| 45 |
score = result["score"]
|
|
@@ -47,107 +105,315 @@ def detect_objects(image, checkpoint, confidence_threshold=0.3, use_url=False, u
|
|
| 47 |
continue
|
| 48 |
label = f"{result['label']} ({score:.2f})"
|
| 49 |
box = result["box"]
|
| 50 |
-
# Validate and convert box to (
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
if x2 <= x1 or y2 <= y1:
|
| 57 |
continue
|
| 58 |
-
bounding_box = (
|
| 59 |
annotations.append((bounding_box, label))
|
| 60 |
|
| 61 |
-
# Handle empty annotations
|
| 62 |
if not annotations:
|
| 63 |
return (input_image, []), gr.Markdown(
|
| 64 |
"**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
|
| 65 |
-
visible=True
|
| 66 |
)
|
| 67 |
|
| 68 |
-
# Return base image and annotations
|
| 69 |
return (input_image, annotations), gr.Markdown(visible=False)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# Gradio interface
|
| 72 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
gr.Markdown(
|
| 74 |
"""
|
| 75 |
# Real-Time Object Detection Demo
|
| 76 |
-
Experience state-of-the-art object detection with USTC's Dfine models. Upload an image
|
| 77 |
-
|
| 78 |
-
**Instructions**:
|
| 79 |
-
- Upload an image or enter a URL.
|
| 80 |
-
- Choose a model checkpoint from the dropdown.
|
| 81 |
-
- Adjust the confidence threshold (0.1 to 1.0).
|
| 82 |
-
- Click "Detect Objects" to view results, or select an example.
|
| 83 |
-
- Use "Clear" to reset inputs and outputs.
|
| 84 |
""",
|
| 85 |
-
elem_classes="header-text"
|
| 86 |
)
|
| 87 |
-
|
| 88 |
-
with gr.
|
| 89 |
-
with gr.
|
| 90 |
-
with gr.
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
elem_classes="input-component",
|
| 110 |
-
)
|
| 111 |
-
confidence_threshold = gr.Slider(
|
| 112 |
-
minimum=0.1,
|
| 113 |
-
maximum=1.0,
|
| 114 |
-
value=0.3,
|
| 115 |
-
step=0.1,
|
| 116 |
-
label="Confidence Threshold",
|
| 117 |
-
elem_classes="input-component",
|
| 118 |
-
)
|
| 119 |
-
with gr.Row():
|
| 120 |
-
detect_button = gr.Button(
|
| 121 |
-
"Detect Objects",
|
| 122 |
-
variant="primary",
|
| 123 |
-
elem_classes="action-button",
|
| 124 |
)
|
| 125 |
-
|
| 126 |
-
"
|
| 127 |
-
variant="secondary",
|
| 128 |
-
elem_classes="action-button",
|
| 129 |
)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
-
error_message = gr.Markdown(visible=False, elem_classes="error-text")
|
| 139 |
-
|
| 140 |
-
gr.Examples(
|
| 141 |
-
examples=[
|
| 142 |
-
["./image.jpg", False, "", checkpoints[0], 0.3],
|
| 143 |
-
[None, True, "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg", checkpoints[0], 0.3],
|
| 144 |
-
],
|
| 145 |
-
inputs=[image_input, use_url, url_input, checkpoint, confidence_threshold],
|
| 146 |
-
outputs=[output_annotated, error_message],
|
| 147 |
-
fn=detect_objects,
|
| 148 |
-
cache_examples=False, # Avoid caching due to model size
|
| 149 |
-
label="Select an example to run the model",
|
| 150 |
-
)
|
| 151 |
|
| 152 |
# Dynamic visibility for URL input
|
| 153 |
use_url.change(
|
|
@@ -156,34 +422,65 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 156 |
outputs=url_input,
|
| 157 |
)
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
fn=lambda: (
|
| 162 |
-
None,
|
| 163 |
-
False,
|
| 164 |
-
"",
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
None,
|
| 168 |
-
gr.Markdown(visible=False),
|
| 169 |
),
|
| 170 |
outputs=[
|
| 171 |
image_input,
|
| 172 |
use_url,
|
| 173 |
url_input,
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
],
|
| 179 |
)
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
|
| 183 |
fn=detect_objects,
|
| 184 |
-
inputs=[
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
)
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
| 189 |
-
demo.launch()
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from typing import Tuple, List, Optional
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import shutil
|
| 6 |
+
import tempfile
|
| 7 |
+
import numpy as np
|
| 8 |
+
import cv2
|
| 9 |
import gradio as gr
|
| 10 |
+
from PIL import Image
|
| 11 |
from transformers import pipeline
|
| 12 |
from transformers.image_utils import load_image
|
| 13 |
+
import tqdm
|
| 14 |
|
| 15 |
+
# Configuration constants
|
| 16 |
+
CHECKPOINTS = [
|
| 17 |
+
"ustc-community/dfine_m_obj365",
|
| 18 |
+
"ustc-community/dfine_n_coco",
|
| 19 |
+
"ustc-community/dfine_s_coco",
|
| 20 |
+
"ustc-community/dfine_m_coco",
|
| 21 |
+
"ustc-community/dfine_l_coco",
|
| 22 |
+
"ustc-community/dfine_x_coco",
|
| 23 |
+
"ustc-community/dfine_s_obj365",
|
| 24 |
+
"ustc-community/dfine_l_obj365",
|
| 25 |
+
"ustc-community/dfine_x_obj365",
|
| 26 |
+
"ustc-community/dfine_s_obj2coco",
|
| 27 |
+
"ustc-community/dfine_m_obj2coco",
|
| 28 |
+
"ustc-community/dfine_l_obj2coco_e25",
|
| 29 |
+
"ustc-community/dfine_x_obj2coco",
|
| 30 |
]
|
| 31 |
+
MAX_NUM_FRAMES = 300
|
| 32 |
+
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
| 33 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
| 34 |
+
IMAGE_EXAMPLES = [
|
| 35 |
+
{"path": "./image.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 36 |
+
{
|
| 37 |
+
"path": None,
|
| 38 |
+
"use_url": True,
|
| 39 |
+
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
|
| 40 |
+
"label": "Flickr Image",
|
| 41 |
+
},
|
| 42 |
+
]
|
| 43 |
+
VIDEO_EXAMPLES = [
|
| 44 |
+
{"path": "./video.mp4", "label": "Local Video"},
|
| 45 |
+
]
|
| 46 |
+
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
| 47 |
+
|
| 48 |
+
logging.basicConfig(
|
| 49 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 50 |
+
)
|
| 51 |
+
logger = logging.getLogger(__name__)
|
| 52 |
+
|
| 53 |
+
VIDEO_OUTPUT_DIR = Path("static/videos")
|
| 54 |
+
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
def detect_objects(
|
| 58 |
+
image: Optional[Image.Image],
|
| 59 |
+
checkpoint: str,
|
| 60 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 61 |
+
use_url: bool = False,
|
| 62 |
+
url: str = "",
|
| 63 |
+
) -> Tuple[
|
| 64 |
+
Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
|
| 65 |
+
gr.Markdown,
|
| 66 |
+
]:
|
| 67 |
if use_url and url:
|
| 68 |
+
try:
|
| 69 |
+
input_image = load_image(url)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.error(f"Failed to load image from URL {url}: {str(e)}")
|
| 72 |
+
return None, gr.Markdown(
|
| 73 |
+
f"**Error**: Failed to load image from URL: {str(e)}", visible=True
|
| 74 |
+
)
|
| 75 |
elif image is not None:
|
| 76 |
+
if not isinstance(image, Image.Image):
|
| 77 |
+
logger.error("Input image is not a PIL Image")
|
| 78 |
+
return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
|
| 79 |
input_image = image
|
| 80 |
else:
|
| 81 |
+
return None, gr.Markdown(
|
| 82 |
+
"**Error**: Please provide an image or URL.", visible=True
|
| 83 |
+
)
|
| 84 |
|
| 85 |
+
try:
|
| 86 |
+
pipe = pipeline(
|
| 87 |
+
"object-detection",
|
| 88 |
+
model=checkpoint,
|
| 89 |
+
image_processor=checkpoint,
|
| 90 |
+
device="cpu",
|
| 91 |
+
)
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
|
| 94 |
+
return None, gr.Markdown(
|
| 95 |
+
f"**Error**: Failed to load model: {str(e)}", visible=True
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
results = pipe(input_image, threshold=confidence_threshold)
|
| 99 |
img_width, img_height = input_image.size
|
| 100 |
|
|
|
|
| 101 |
annotations = []
|
| 102 |
for result in results:
|
| 103 |
score = result["score"]
|
|
|
|
| 105 |
continue
|
| 106 |
label = f"{result['label']} ({score:.2f})"
|
| 107 |
box = result["box"]
|
| 108 |
+
# Validate and convert box to (xmin, ymin, xmax, ymax)
|
| 109 |
+
bbox_xmin = max(0, int(box["xmin"]))
|
| 110 |
+
bbox_ymin = max(0, int(box["ymin"]))
|
| 111 |
+
bbox_xmax = min(img_width, int(box["xmax"]))
|
| 112 |
+
bbox_ymax = min(img_height, int(box["ymax"]))
|
| 113 |
+
if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
|
|
|
|
| 114 |
continue
|
| 115 |
+
bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
|
| 116 |
annotations.append((bounding_box, label))
|
| 117 |
|
|
|
|
| 118 |
if not annotations:
|
| 119 |
return (input_image, []), gr.Markdown(
|
| 120 |
"**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
|
| 121 |
+
visible=True,
|
| 122 |
)
|
| 123 |
|
|
|
|
| 124 |
return (input_image, annotations), gr.Markdown(visible=False)
|
| 125 |
|
| 126 |
+
|
| 127 |
+
def annotate_frame(
|
| 128 |
+
image: Image.Image, annotations: List[Tuple[Tuple[int, int, int, int], str]]
|
| 129 |
+
) -> np.ndarray:
|
| 130 |
+
image_np = np.array(image)
|
| 131 |
+
image_bgr = image_np[:, :, ::-1].copy() # RGB to BGR
|
| 132 |
+
|
| 133 |
+
for (xmin, ymin, xmax, ymax), label in annotations:
|
| 134 |
+
cv2.rectangle(image_bgr, (xmin, ymin), (xmax, ymax), (255, 255, 255), 2)
|
| 135 |
+
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
|
| 136 |
+
cv2.rectangle(
|
| 137 |
+
image_bgr,
|
| 138 |
+
(xmin, ymin - text_size[1] - 4),
|
| 139 |
+
(xmin + text_size[0], ymin),
|
| 140 |
+
(255, 255, 255),
|
| 141 |
+
-1,
|
| 142 |
+
)
|
| 143 |
+
cv2.putText(
|
| 144 |
+
image_bgr,
|
| 145 |
+
label,
|
| 146 |
+
(xmin, ymin - 4),
|
| 147 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 148 |
+
0.5,
|
| 149 |
+
(0, 0, 0),
|
| 150 |
+
1,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
return image_bgr
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def process_video(
|
| 157 |
+
video_path: str,
|
| 158 |
+
checkpoint: str,
|
| 159 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 160 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 161 |
+
) -> Tuple[Optional[str], gr.Markdown]:
|
| 162 |
+
if not video_path or not os.path.isfile(video_path):
|
| 163 |
+
logger.error(f"Invalid video path: {video_path}")
|
| 164 |
+
return None, gr.Markdown(
|
| 165 |
+
"**Error**: Please provide a valid video file.", visible=True
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
ext = os.path.splitext(video_path)[1].lower()
|
| 169 |
+
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
| 170 |
+
logger.error(f"Unsupported video format: {ext}")
|
| 171 |
+
return None, gr.Markdown(
|
| 172 |
+
f"**Error**: Unsupported video format. Use MP4, AVI, or MOV.", visible=True
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
cap = cv2.VideoCapture(video_path)
|
| 177 |
+
if not cap.isOpened():
|
| 178 |
+
logger.error(f"Failed to open video: {video_path}")
|
| 179 |
+
return None, gr.Markdown(
|
| 180 |
+
"**Error**: Failed to open video file.", visible=True
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 184 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 185 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 186 |
+
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 187 |
+
|
| 188 |
+
# Use H.264 codec for browser compatibility
|
| 189 |
+
fourcc = cv2.VideoWriter_fourcc(*"H264")
|
| 190 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 191 |
+
writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
|
| 192 |
+
if not writer.isOpened():
|
| 193 |
+
logger.error("Failed to initialize video writer")
|
| 194 |
+
cap.release()
|
| 195 |
+
temp_file.close()
|
| 196 |
+
os.unlink(temp_file.name)
|
| 197 |
+
return None, gr.Markdown(
|
| 198 |
+
"**Error**: Failed to initialize video writer.", visible=True
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
frame_count = 0
|
| 202 |
+
for _ in tqdm.tqdm(
|
| 203 |
+
range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
|
| 204 |
+
):
|
| 205 |
+
ok, frame = cap.read()
|
| 206 |
+
if not ok:
|
| 207 |
+
break
|
| 208 |
+
rgb_frame = frame[:, :, ::-1] # BGR to RGB
|
| 209 |
+
pil_image = Image.fromarray(rgb_frame)
|
| 210 |
+
(annotated_image, annotations), _ = detect_objects(
|
| 211 |
+
pil_image, checkpoint, confidence_threshold, use_url=False, url=""
|
| 212 |
+
)
|
| 213 |
+
if annotated_image is None:
|
| 214 |
+
continue
|
| 215 |
+
annotated_frame = annotate_frame(annotated_image, annotations)
|
| 216 |
+
writer.write(annotated_frame)
|
| 217 |
+
frame_count += 1
|
| 218 |
+
|
| 219 |
+
writer.release()
|
| 220 |
+
cap.release()
|
| 221 |
+
|
| 222 |
+
if frame_count == 0:
|
| 223 |
+
logger.warning("No valid frames processed in video")
|
| 224 |
+
temp_file.close()
|
| 225 |
+
os.unlink(temp_file.name)
|
| 226 |
+
return None, gr.Markdown(
|
| 227 |
+
"**Warning**: No valid frames processed. Try a different video or threshold.",
|
| 228 |
+
visible=True,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
temp_file.close()
|
| 232 |
+
|
| 233 |
+
# Copy to persistent directory for Gradio access
|
| 234 |
+
output_filename = f"output_{os.path.basename(temp_file.name)}"
|
| 235 |
+
output_path = VIDEO_OUTPUT_DIR / output_filename
|
| 236 |
+
shutil.copy(temp_file.name, output_path)
|
| 237 |
+
os.unlink(temp_file.name) # Remove temporary file
|
| 238 |
+
logger.info(f"Video saved to {output_path}")
|
| 239 |
+
|
| 240 |
+
return str(output_path), gr.Markdown(visible=False)
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
logger.error(f"Video processing failed: {str(e)}")
|
| 244 |
+
if "temp_file" in locals():
|
| 245 |
+
temp_file.close()
|
| 246 |
+
if os.path.exists(temp_file.name):
|
| 247 |
+
os.unlink(temp_file.name)
|
| 248 |
+
return None, gr.Markdown(
|
| 249 |
+
f"**Error**: Video processing failed: {str(e)}", visible=True
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def create_image_inputs() -> List[gr.components.Component]:
|
| 254 |
+
return [
|
| 255 |
+
gr.Image(
|
| 256 |
+
label="Upload Image",
|
| 257 |
+
type="pil",
|
| 258 |
+
sources=["upload", "webcam"],
|
| 259 |
+
interactive=True,
|
| 260 |
+
elem_classes="input-component",
|
| 261 |
+
),
|
| 262 |
+
gr.Checkbox(label="Use Image URL Instead", value=False),
|
| 263 |
+
gr.Textbox(
|
| 264 |
+
label="Image URL",
|
| 265 |
+
placeholder="https://example.com/image.jpg",
|
| 266 |
+
visible=False,
|
| 267 |
+
elem_classes="input-component",
|
| 268 |
+
),
|
| 269 |
+
gr.Dropdown(
|
| 270 |
+
choices=CHECKPOINTS,
|
| 271 |
+
label="Select Model Checkpoint",
|
| 272 |
+
value=DEFAULT_CHECKPOINT,
|
| 273 |
+
elem_classes="input-component",
|
| 274 |
+
),
|
| 275 |
+
gr.Slider(
|
| 276 |
+
minimum=0.1,
|
| 277 |
+
maximum=1.0,
|
| 278 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
| 279 |
+
step=0.1,
|
| 280 |
+
label="Confidence Threshold",
|
| 281 |
+
elem_classes="input-component",
|
| 282 |
+
),
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def create_video_inputs() -> List[gr.components.Component]:
|
| 287 |
+
return [
|
| 288 |
+
gr.Video(
|
| 289 |
+
label="Upload Video",
|
| 290 |
+
sources=["upload"],
|
| 291 |
+
interactive=True,
|
| 292 |
+
format="mp4", # Ensure MP4 format
|
| 293 |
+
elem_classes="input-component",
|
| 294 |
+
),
|
| 295 |
+
gr.Dropdown(
|
| 296 |
+
choices=CHECKPOINTS,
|
| 297 |
+
label="Select Model Checkpoint",
|
| 298 |
+
value=DEFAULT_CHECKPOINT,
|
| 299 |
+
elem_classes="input-component",
|
| 300 |
+
),
|
| 301 |
+
gr.Slider(
|
| 302 |
+
minimum=0.1,
|
| 303 |
+
maximum=1.0,
|
| 304 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
| 305 |
+
step=0.1,
|
| 306 |
+
label="Confidence Threshold",
|
| 307 |
+
elem_classes="input-component",
|
| 308 |
+
),
|
| 309 |
+
]
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def create_button_row(is_image: bool) -> List[gr.Button]:
|
| 313 |
+
prefix = "Image" if is_image else "Video"
|
| 314 |
+
return [
|
| 315 |
+
gr.Button(
|
| 316 |
+
f"{prefix} Detect Objects", variant="primary", elem_classes="action-button"
|
| 317 |
+
),
|
| 318 |
+
gr.Button(f"{prefix} Clear", variant="secondary", elem_classes="action-button"),
|
| 319 |
+
]
|
| 320 |
+
|
| 321 |
+
|
| 322 |
# Gradio interface
|
| 323 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 324 |
gr.Markdown(
|
| 325 |
"""
|
| 326 |
# Real-Time Object Detection Demo
|
| 327 |
+
Experience state-of-the-art object detection with USTC's Dfine models. Upload an image or video,
|
| 328 |
+
provide a URL, or try an example below. Select a model and adjust the confidence threshold to see detections in real time!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
""",
|
| 330 |
+
elem_classes="header-text",
|
| 331 |
)
|
| 332 |
+
|
| 333 |
+
with gr.Tabs():
|
| 334 |
+
with gr.Tab("Image"):
|
| 335 |
+
with gr.Row():
|
| 336 |
+
with gr.Column(scale=1, min_width=300):
|
| 337 |
+
with gr.Group():
|
| 338 |
+
(
|
| 339 |
+
image_input,
|
| 340 |
+
use_url,
|
| 341 |
+
url_input,
|
| 342 |
+
image_checkpoint,
|
| 343 |
+
image_confidence_threshold,
|
| 344 |
+
) = create_image_inputs()
|
| 345 |
+
image_detect_button, image_clear_button = create_button_row(
|
| 346 |
+
is_image=True
|
| 347 |
+
)
|
| 348 |
+
with gr.Column(scale=2):
|
| 349 |
+
image_output = gr.AnnotatedImage(
|
| 350 |
+
label="Detection Results",
|
| 351 |
+
show_label=True,
|
| 352 |
+
color_map=None,
|
| 353 |
+
elem_classes="output-component",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
)
|
| 355 |
+
image_error_message = gr.Markdown(
|
| 356 |
+
visible=False, elem_classes="error-text"
|
|
|
|
|
|
|
| 357 |
)
|
| 358 |
+
|
| 359 |
+
gr.Examples(
|
| 360 |
+
examples=[
|
| 361 |
+
[
|
| 362 |
+
example["path"],
|
| 363 |
+
example["use_url"],
|
| 364 |
+
example["url"],
|
| 365 |
+
DEFAULT_CHECKPOINT,
|
| 366 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 367 |
+
]
|
| 368 |
+
for example in IMAGE_EXAMPLES
|
| 369 |
+
],
|
| 370 |
+
inputs=[
|
| 371 |
+
image_input,
|
| 372 |
+
use_url,
|
| 373 |
+
url_input,
|
| 374 |
+
image_checkpoint,
|
| 375 |
+
image_confidence_threshold,
|
| 376 |
+
],
|
| 377 |
+
outputs=[image_output, image_error_message],
|
| 378 |
+
fn=detect_objects,
|
| 379 |
+
cache_examples=False,
|
| 380 |
+
label="Select an image example to populate inputs",
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
with gr.Tab("Video"):
|
| 384 |
+
gr.Markdown(
|
| 385 |
+
f"The input video will be truncated to {MAX_NUM_FRAMES} frames."
|
| 386 |
+
)
|
| 387 |
+
with gr.Row():
|
| 388 |
+
with gr.Column(scale=1, min_width=300):
|
| 389 |
+
with gr.Group():
|
| 390 |
+
video_input, video_checkpoint, video_confidence_threshold = (
|
| 391 |
+
create_video_inputs()
|
| 392 |
+
)
|
| 393 |
+
video_detect_button, video_clear_button = create_button_row(
|
| 394 |
+
is_image=False
|
| 395 |
+
)
|
| 396 |
+
with gr.Column(scale=2):
|
| 397 |
+
video_output = gr.Video(
|
| 398 |
+
label="Detection Results",
|
| 399 |
+
format="mp4", # Explicit MP4 format
|
| 400 |
+
elem_classes="output-component",
|
| 401 |
+
)
|
| 402 |
+
video_error_message = gr.Markdown(
|
| 403 |
+
visible=False, elem_classes="error-text"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
gr.Examples(
|
| 407 |
+
examples=[
|
| 408 |
+
[example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD]
|
| 409 |
+
for example in VIDEO_EXAMPLES
|
| 410 |
+
],
|
| 411 |
+
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
| 412 |
+
outputs=[video_output, video_error_message],
|
| 413 |
+
fn=process_video,
|
| 414 |
+
cache_examples=False,
|
| 415 |
+
label="Select a video example to populate inputs",
|
| 416 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
# Dynamic visibility for URL input
|
| 419 |
use_url.change(
|
|
|
|
| 422 |
outputs=url_input,
|
| 423 |
)
|
| 424 |
|
| 425 |
+
# Image clear button
|
| 426 |
+
image_clear_button.click(
|
| 427 |
fn=lambda: (
|
| 428 |
+
None,
|
| 429 |
+
False,
|
| 430 |
+
"",
|
| 431 |
+
DEFAULT_CHECKPOINT,
|
| 432 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 433 |
+
None,
|
| 434 |
+
gr.Markdown(visible=False),
|
| 435 |
),
|
| 436 |
outputs=[
|
| 437 |
image_input,
|
| 438 |
use_url,
|
| 439 |
url_input,
|
| 440 |
+
image_checkpoint,
|
| 441 |
+
image_confidence_threshold,
|
| 442 |
+
image_output,
|
| 443 |
+
image_error_message,
|
| 444 |
+
],
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# Video clear button
|
| 448 |
+
video_clear_button.click(
|
| 449 |
+
fn=lambda: (
|
| 450 |
+
None,
|
| 451 |
+
DEFAULT_CHECKPOINT,
|
| 452 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 453 |
+
None,
|
| 454 |
+
gr.Markdown(visible=False),
|
| 455 |
+
),
|
| 456 |
+
outputs=[
|
| 457 |
+
video_input,
|
| 458 |
+
video_checkpoint,
|
| 459 |
+
video_confidence_threshold,
|
| 460 |
+
video_output,
|
| 461 |
+
video_error_message,
|
| 462 |
],
|
| 463 |
)
|
| 464 |
|
| 465 |
+
# Image detect button
|
| 466 |
+
image_detect_button.click(
|
| 467 |
fn=detect_objects,
|
| 468 |
+
inputs=[
|
| 469 |
+
image_input,
|
| 470 |
+
image_checkpoint,
|
| 471 |
+
image_confidence_threshold,
|
| 472 |
+
use_url,
|
| 473 |
+
url_input,
|
| 474 |
+
],
|
| 475 |
+
outputs=[image_output, image_error_message],
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# Video detect button
|
| 479 |
+
video_detect_button.click(
|
| 480 |
+
fn=process_video,
|
| 481 |
+
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
| 482 |
+
outputs=[video_output, video_error_message],
|
| 483 |
)
|
| 484 |
|
| 485 |
if __name__ == "__main__":
|
| 486 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
gradio
|
| 2 |
transformers @ git+https://github.com/huggingface/transformers
|
| 3 |
torch
|
| 4 |
-
torchvision
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
transformers @ git+https://github.com/huggingface/transformers
|
| 3 |
torch
|
| 4 |
+
torchvision
|
| 5 |
+
opencv-python
|
| 6 |
+
tqdm
|
| 7 |
+
pillow
|
video.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:747f9c2f9d19e4955603e1a13b69663187882d4c6a8fbcad18ddbd04ee792d4d
|
| 3 |
+
size 1972564
|