Spaces:
Running
Running
File size: 5,391 Bytes
297e244 cbf5820 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 7d96516 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 297e244 4cba436 297e244 4cba436 297e244 a4107b1 cbf5820 a4107b1 cbf5820 a4107b1 cbf5820 4cba436 a4107b1 297e244 4cba436 297e244 a4107b1 297e244 a4107b1 297e244 a4107b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import tempfile
import re
import librosa
import torch
import json
import numpy as np
from transformers import Wav2Vec2ForCTC, AutoProcessor
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
uroman_dir = "uroman"
assert os.path.exists(uroman_dir)
UROMAN_PL = os.path.join(uroman_dir, "bin", "uroman.pl")
ASR_SAMPLING_RATE = 16_000
WORD_SCORE_DEFAULT_IF_LM = -0.18
WORD_SCORE_DEFAULT_IF_NOLM = -3.5
LM_SCORE_DEFAULT = 1.48
MODEL_ID = "upload/mms_zs"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
token_file = "upload/mms_zs/tokens.txt"
def error_check_file(filepath):
if not isinstance(filepath, str):
return "Expected file to be of type 'str'. Instead got {}".format(
type(filepath)
)
if not os.path.exists(filepath):
return "Input file '{}' doesn't exists".format(type(filepath))
def norm_uroman(text):
text = text.lower()
text = text.replace("’", "'")
text = re.sub("([^a-z' ])", " ", text)
text = re.sub(" +", " ", text)
return text.strip()
def uromanize(words):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join(words))
cmd = f"perl " + UROMAN_PL
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
lexicon = {}
with open(tf2.name) as f:
for idx, line in enumerate(f):
if not line.strip():
continue
line = re.sub(r"\s+", " ", norm_uroman(line)).strip()
lexicon[words[idx]] = " ".join(line) + " |"
return lexicon
def load_lexicon(filepath):
words = {}
with open(filepath) as f:
for line in f:
line = line.strip()
# ignore invalid words.
if not line or " " in line or len(line) > 50:
continue
for w in line.split():
words[w.lower()] = True
return uromanize(list(words.keys()))
def process(
audio_data,
words_file,
lm_path=None,
wscore=None,
lmscore=None,
wscore_usedefault=True,
lmscore_usedefault=True,
):
if isinstance(audio_data, tuple):
# microphone
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(float)
assert sr == ASR_SAMPLING_RATE, "Invalid sampling rate"
else:
# file upload
assert isinstance(audio_data, str)
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
# print(audio_samples[:10])
# print("I'm here 102")
print("len audio_samples", len(audio_samples))
lang_code = "eng"
# processor.tokenizer.set_target_lang(lang_code)
# print("I'm here 107")
# model.load_adapter(lang_code)
# print("I'm here 109")
inputs = processor(
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
)
# print("I'm here 106")
print("inputs type", type(inputs))
# print("inputs size", inputs.size)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
# print("I'm here 122")
with torch.no_grad():
outputs = model(**inputs).logits
# Setup lexicon and decoder
# print("before uroman")
lexicon = load_lexicon(words_file)
# print("after uroman")
# print("len lexicon", len(lexicon))
with tempfile.NamedTemporaryFile() as lexicon_file:
print("lm_path before", lm_path)
if lm_path is not None and not lm_path.strip():
lm_path = None
print("lm_path after", lm_path)
with open(lexicon_file.name, "w") as f:
idx = 10
for word, spelling in lexicon.items():
f.write(word + " " + spelling + "\n")
if idx % 250 == 0:
print(word, spelling, flush=True)
idx += 1
if wscore_usedefault:
wscore = (
WORD_SCORE_DEFAULT_IF_LM
if lm_path is not None
else WORD_SCORE_DEFAULT_IF_NOLM
)
if lmscore_usedefault:
lmscore = LM_SCORE_DEFAULT if lm_path is not None else 0
print("using word score", wscore)
print("using lm score", lmscore)
beam_search_decoder = ctc_decoder(
lexicon=lexicon_file.name,
tokens=token_file,
lm=lm_path,
nbest=1,
beam_size=500,
beam_size_token=50,
lm_weight=lmscore,
word_score=wscore,
sil_score=0,
blank_token="<s>",
)
beam_search_result = beam_search_decoder(outputs.to("cpu"))
transcription = " ".join(beam_search_result[0][0].words).strip()
return transcription
ZS_EXAMPLES = [["upload/english.mp3", "upload/words_top10k.txt"]]
print(process("upload/english.mp3", "upload/words_top10k.txt"))
|