Jingkang Yang
first commit
bd27f44
import numpy as np
import torch
import os
import copy
from PIL import Image
import json
import imageio
# import clip
SCANNET_COLOR_MAP_20 = {-1: (0., 0., 0.), 0: (174., 199., 232.), 1: (152., 223., 138.), 2: (31., 119., 180.), 3: (255., 187., 120.), 4: (188., 189., 34.), 5: (140., 86., 75.),
6: (255., 152., 150.), 7: (214., 39., 40.), 8: (197., 176., 213.), 9: (148., 103., 189.), 10: (196., 156., 148.), 11: (23., 190., 207.), 12: (247., 182., 210.),
13: (219., 219., 141.), 14: (255., 127., 14.), 15: (158., 218., 229.), 16: (44., 160., 44.), 17: (112., 128., 144.), 18: (227., 119., 194.), 19: (82., 84., 163.)}
class Voxelize(object):
def __init__(self,
voxel_size=0.05,
hash_type="fnv",
mode='train',
keys=("coord", "normal", "color", "label"),
return_discrete_coord=False,
return_min_coord=False):
self.voxel_size = voxel_size
self.hash = self.fnv_hash_vec if hash_type == "fnv" else self.ravel_hash_vec
assert mode in ["train", "test"]
self.mode = mode
self.keys = keys
self.return_discrete_coord = return_discrete_coord
self.return_min_coord = return_min_coord
def __call__(self, data_dict):
assert "coord" in data_dict.keys()
discrete_coord = np.floor(data_dict["coord"] / np.array(self.voxel_size)).astype(np.int)
min_coord = discrete_coord.min(0) * np.array(self.voxel_size)
discrete_coord -= discrete_coord.min(0)
key = self.hash(discrete_coord)
idx_sort = np.argsort(key)
key_sort = key[idx_sort]
_, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True)
if self.mode == 'train': # train mode
# idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + np.random.randint(0, count.max(), count.size) % count
idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1])
idx_unique = idx_sort[idx_select]
if self.return_discrete_coord:
data_dict["discrete_coord"] = discrete_coord[idx_unique]
if self.return_min_coord:
data_dict["min_coord"] = min_coord.reshape([1, 3])
for key in self.keys:
data_dict[key] = data_dict[key][idx_unique]
return data_dict
elif self.mode == 'test': # test mode
data_part_list = []
for i in range(count.max()):
idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + i % count
idx_part = idx_sort[idx_select]
data_part = dict(index=idx_part)
for key in data_dict.keys():
if key in self.keys:
data_part[key] = data_dict[key][idx_part]
else:
data_part[key] = data_dict[key]
if self.return_discrete_coord:
data_part["discrete_coord"] = discrete_coord[idx_part]
if self.return_min_coord:
data_part["min_coord"] = min_coord.reshape([1, 3])
data_part_list.append(data_part)
return data_part_list
else:
raise NotImplementedError
@staticmethod
def ravel_hash_vec(arr):
"""
Ravel the coordinates after subtracting the min coordinates.
"""
assert arr.ndim == 2
arr = arr.copy()
arr -= arr.min(0)
arr = arr.astype(np.uint64, copy=False)
arr_max = arr.max(0).astype(np.uint64) + 1
keys = np.zeros(arr.shape[0], dtype=np.uint64)
# Fortran style indexing
for j in range(arr.shape[1] - 1):
keys += arr[:, j]
keys *= arr_max[j + 1]
keys += arr[:, -1]
return keys
@staticmethod
def fnv_hash_vec(arr):
"""
FNV64-1A
"""
assert arr.ndim == 2
# Floor first for negative coordinates
arr = arr.copy()
arr = arr.astype(np.uint64, copy=False)
hashed_arr = np.uint64(14695981039346656037) * np.ones(arr.shape[0], dtype=np.uint64)
for j in range(arr.shape[1]):
hashed_arr *= np.uint64(1099511628211)
hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j])
return hashed_arr
def overlap_percentage(mask1, mask2):
intersection = np.logical_and(mask1, mask2)
area_intersection = np.sum(intersection)
area_mask1 = np.sum(mask1)
area_mask2 = np.sum(mask2)
smaller_area = min(area_mask1, area_mask2)
return area_intersection / smaller_area
def remove_samll_masks(masks, ratio=0.8):
filtered_masks = []
skip_masks = set()
for i, mask1_dict in enumerate(masks):
if i in skip_masks:
continue
should_keep = True
for j, mask2_dict in enumerate(masks):
if i == j or j in skip_masks:
continue
mask1 = mask1_dict["segmentation"]
mask2 = mask2_dict["segmentation"]
overlap = overlap_percentage(mask1, mask2)
if overlap > ratio:
if np.sum(mask1) < np.sum(mask2):
should_keep = False
break
else:
skip_masks.add(j)
if should_keep:
filtered_masks.append(mask1)
return filtered_masks
def to_numpy(x):
if isinstance(x, torch.Tensor):
x = x.clone().detach().cpu().numpy()
assert isinstance(x, np.ndarray)
return x
def save_point_cloud(coord, color=None, file_path="pc.ply", logger=None):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
coord = to_numpy(coord)
if color is not None:
color = to_numpy(color)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(coord)
pcd.colors = o3d.utility.Vector3dVector(np.ones_like(coord) if color is None else color)
o3d.io.write_point_cloud(file_path, pcd)
if logger is not None:
logger.info(f"Save Point Cloud to: {file_path}")
def remove_small_group(group_ids, th):
unique_elements, counts = np.unique(group_ids, return_counts=True)
result = group_ids.copy()
for i, count in enumerate(counts):
if count < th:
result[group_ids == unique_elements[i]] = -1
return result
def pairwise_indices(length):
return [[i, i + 1] if i + 1 < length else [i] for i in range(0, length, 2)]
def num_to_natural(group_ids):
'''
Change the group number to natural number arrangement
'''
if np.all(group_ids == -1):
return group_ids
array = copy.deepcopy(group_ids)
unique_values = np.unique(array[array != -1])
mapping = np.full(np.max(unique_values) + 2, -1)
mapping[unique_values + 1] = np.arange(len(unique_values))
array = mapping[array + 1]
return array
def get_matching_indices(source, pcd_tree, search_voxel_size, K=None):
match_inds = []
for i, point in enumerate(source.points):
[_, idx, _] = pcd_tree.search_radius_vector_3d(point, search_voxel_size)
if K is not None:
idx = idx[:K]
for j in idx:
# match_inds[i, j] = 1
match_inds.append((i, j))
return match_inds
def visualize_3d(data_dict, text_feat_path, save_path):
text_feat = torch.load(text_feat_path)
group_logits = np.einsum('nc,mc->nm', data_dict["group_feat"], text_feat)
group_labels = np.argmax(group_logits, axis=-1)
labels = group_labels[data_dict["group"]]
labels[data_dict["group"] == -1] = -1
visualize_pcd(data_dict["coord"], data_dict["color"], labels, save_path)
def visualize_pcd(coord, pcd_color, labels, save_path):
# alpha = 0.5
label_color = np.array([SCANNET_COLOR_MAP_20[label] for label in labels])
# overlay = (pcd_color * (1-alpha) + label_color * alpha).astype(np.uint8) / 255
label_color = label_color / 255
save_point_cloud(coord, label_color, save_path)
def visualize_2d(img_color, labels, img_size, save_path):
import matplotlib.pyplot as plt
# from skimage.segmentation import mark_boundaries
# from skimage.color import label2rgb
label_names = ["wall", "floor", "cabinet", "bed", "chair",
"sofa", "table", "door", "window", "bookshelf",
"picture", "counter", "desk", "curtain", "refridgerator",
"shower curtain", "toilet", "sink", "bathtub", "other"]
colors = np.array(list(SCANNET_COLOR_MAP_20.values()))[1:]
segmentation_color = np.zeros((img_size[0], img_size[1], 3))
for i, color in enumerate(colors):
segmentation_color[labels == i] = color
alpha = 1
overlay = (img_color * (1-alpha) + segmentation_color * alpha).astype(np.uint8)
fig, ax = plt.subplots()
ax.imshow(overlay)
patches = [plt.plot([], [], 's', color=np.array(color)/255, label=label)[0] for label, color in zip(label_names, colors)]
plt.legend(handles=patches, bbox_to_anchor=(0.5, -0.1), loc='upper center', ncol=4, fontsize='small')
plt.savefig(save_path, bbox_inches='tight')
plt.show()
def visualize_partition(coord, group_id, save_path):
group_id = group_id.reshape(-1)
num_groups = group_id.max() + 1
group_colors = np.random.rand(num_groups, 3)
group_colors = np.vstack((group_colors, np.array([0,0,0])))
color = group_colors[group_id]
save_point_cloud(coord, color, save_path)
def delete_invalid_group(group, group_feat):
indices = np.unique(group[group != -1])
group = num_to_natural(group)
group_feat = group_feat[indices]
return group, group_feat
def group_sem_voting(semantic_label, seg_result, instance_num=0):
if instance_num == 0:
instance_num = seg_result.max() + 1
seg_labels = []
sem_map = -1 * torch.ones_like(semantic_label)
for n in range(instance_num):
mask = (seg_result == n)
if mask.sum() == 0:
sem_map[mask] = -1
seg_labels.append(-1)
continue
seg_label_n_cover, seg_label_n_nums = torch.unique(semantic_label[mask], return_counts=True)
seg_label_n = seg_label_n_cover[seg_label_n_nums.max(-1)[1]]
seg_labels.append(seg_label_n)
sem_map[mask] = seg_label_n
return sem_map
def two_image_to_gif(image_1, image_2, name):
num_begin = 30
num_frames = 30
num_end = 30
frames = []
for i in range(num_begin):
frames.append(image_1)
for i in range(num_frames):
image_tmp = image_1 + (image_2 - image_1) * (i / (num_frames - 1))
frames.append(image_tmp.astype(np.uint8))
for i in range(num_end):
frames.append(image_2)
# video_out_file = '{}.gif'.format(name)
# imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25)
video_out_file = '{}.mp4'.format(name)
imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25, quality=8)