Spaces:
Runtime error
Runtime error
File size: 17,656 Bytes
bd27f44 9a023ed 6328d06 9a023ed bd27f44 6328d06 9a023ed bd27f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import os
os.system('pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html')
try:
import detectron2
except:
import os
# os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .')
os.system('pip install git+https://github.com/Jun-CEN/CLIP.git')
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import numpy as np
import gradio as gr
from tools.util import *
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from open_vocab_seg import add_ovseg_config
from open_vocab_seg.utils import VisualizationDemo, VisualizationDemoIndoor
# constants
WINDOW_NAME = "Open vocabulary segmentation"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_ovseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
parser.add_argument(
"--config-file",
default="configs/ovseg_swinB_vitL_demo.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--input",
default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"],
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--class-names",
default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"],
nargs="+",
help="A list of user-defined class_names"
)
parser.add_argument(
"--output",
default = "./pred",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"],
nargs=argparse.REMAINDER,
)
return parser
args = get_parser().parse_args()
def greet_sailvos3d(rgb_input, depth_map_input, rage_matrices_input, class_candidates):
print(args.class_names)
print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],)
print(class_candidates.split(', '))
args.input = [rgb_input]
args.class_names = class_candidates.split(', ')
depth_map_path = depth_map_input.name
rage_matrices_path = rage_matrices_input.name
print(args.input, args.class_names, depth_map_path, rage_matrices_path)
mp.set_start_method("spawn", force=True)
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemo(cfg)
class_names = args.class_names
print(args.input)
if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
start_time = time.time()
predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png')
visualized_output_depth.save('outputs/Depth_Semantic_SAM.png')
visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png')
visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png')
rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask)
demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path)
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
else:
raise NotImplementedError
Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
Depth_map = read_image('outputs/Depth_rendered.png')
Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif
def greet_scannet(rgb_input, depth_map_input, class_candidates):
rgb_input = rgb_input
depth_map_input = depth_map_input.name
class_candidates = class_candidates.split(', ')
print(rgb_input, depth_map_input, class_candidates)
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemoIndoor(cfg)
""" args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found" """
start_time = time.time()
predictions, output2D, output3D = demo.run_on_pcd_ui(rgb_input, depth_map_input, class_candidates)
output2D['sem_seg_on_rgb'].save('outputs/RGB_Semantic_SAM.png')
output2D['sem_seg_on_depth'].save('outputs/Depth_Semantic_SAM.png')
output2D['sam_seg_on_rgb'].save('outputs/RGB_Semantic_SAM_Mask.png')
output2D['sam_seg_on_depth'].save('outputs/Depth_Semantic_SAM_Mask.png')
""" rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', path)
depth_3d_sam_mask = demo.get_xyzrgb(outputs/'Depth_Semantic_SAM_Mask.png', path) """
rgb_3d_sem = output3D['rgb_3d_sem']
depth_3d_sem = output3D['depth_3d_sem']
rgb_3d_sam = output3D['rgb_3d_sam']
depth_3d_sam = output3D['depth_3d_sam']
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sem, depth_3d_sam = depth_3d_sem, rgb_3d_sam_mask = rgb_3d_sam, depth_3d_sam_mask = depth_3d_sam)
demo.render_3d_video('outputs/xyzrgb.npz')
Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
Depth_map = read_image('outputs/Depth_rendered.png')
Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif
SHARED_UI_WARNING = f'''### [NOTE] It may be very slow in this shared UI.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/mmlab-ntu/Segment-Any-RGBD?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on your own computer.
<a style="display:inline-block" href="https://github.com/Jun-CEN/SegmentAnyRGBD/"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/Project%20Page-online-brightgreen"></a>
'''
with gr.Blocks(analytics_enabled=False) as segrgbd_iface:
with gr.Box():
gr.Markdown(SHARED_UI_WARNING)
#######t2v#######
with gr.Tab(label="Dataset: Sailvos3D"):
with gr.Column():
with gr.Row():
# with gr.Tab(label='input'):
with gr.Column():
with gr.Row():
Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
with gr.Row():
Depth_Map_Input_Component = gr.File(label = 'input_Depth_map')
Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters')
with gr.Row():
Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
vc_end_btn = gr.Button("Send")
with gr.Tab(label='Result'):
with gr.Row():
RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
gr.Examples(examples=[
[
'UI/sailvos3d/ex1/inputs/rgb_000160.bmp',
'UI/sailvos3d/ex1/inputs/depth_000160.npy',
'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
],
[
'UI/sailvos3d/ex2/inputs/rgb_000540.bmp',
'UI/sailvos3d/ex2/inputs/depth_000540.npy',
'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
]],
inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_sailvos3d)
vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_sailvos3d)
with gr.Tab(label="Dataset: Scannet"):
with gr.Column():
with gr.Row():
# with gr.Tab(label='input'):
with gr.Column():
with gr.Row():
Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
with gr.Row():
Depth_Map_Input_Component = gr.File(label = "Input_Depth_Map")
Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
vc_end_btn = gr.Button("Send")
with gr.Tab(label='Result'):
with gr.Row():
RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
gr.Examples(examples=[
[
'UI/scannetv2/examples/scene0000_00/color/1660.jpg',
'UI/scannetv2/examples/scene0000_00/depth/1660.png',
'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
],
[
'UI/scannetv2/examples/scene0000_00/color/5560.jpg',
'UI/scannetv2/examples/scene0000_00/depth/5560.png',
'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
]],
inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_scannet)
vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet_scannet)
demo = segrgbd_iface
demo.launch()
|