File size: 17,656 Bytes
bd27f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a023ed
 
 
6328d06
9a023ed
 
bd27f44
 
6328d06
 
9a023ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd27f44
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

import os
os.system('pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html')

try:
    import detectron2
except:
    import os 
    # os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .')
    os.system('pip install git+https://github.com/Jun-CEN/CLIP.git')
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
    os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
    os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
    
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import numpy as np
import gradio as gr
from tools.util import *

from detectron2.config import get_cfg

from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from open_vocab_seg import add_ovseg_config

from open_vocab_seg.utils import VisualizationDemo, VisualizationDemoIndoor

# constants
WINDOW_NAME = "Open vocabulary segmentation"


def setup_cfg(args):
    # load config from file and command-line arguments
    cfg = get_cfg()
    # for poly lr schedule
    add_deeplab_config(cfg)
    add_ovseg_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    return cfg


def get_parser():
    parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
    parser.add_argument(
        "--config-file",
        default="configs/ovseg_swinB_vitL_demo.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--input",
        default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"],
        nargs="+",
        help="A list of space separated input images; "
        "or a single glob pattern such as 'directory/*.jpg'",
    )
    parser.add_argument(
        "--class-names",
        default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"],
        nargs="+",
        help="A list of user-defined class_names"
    )
    parser.add_argument(
        "--output", 
        default = "./pred",
        help="A file or directory to save output visualizations. "
        "If not given, will show output in an OpenCV window.",
    )
    parser.add_argument(
        "--opts",
        help="Modify config options using the command-line 'KEY VALUE' pairs",
        default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"],
        nargs=argparse.REMAINDER,
    )
    return parser

args = get_parser().parse_args()

def greet_sailvos3d(rgb_input, depth_map_input, rage_matrices_input, class_candidates):
    print(args.class_names)
    print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],)
    print(class_candidates.split(', '))
    args.input = [rgb_input]
    args.class_names = class_candidates.split(', ')
    depth_map_path = depth_map_input.name
    rage_matrices_path = rage_matrices_input.name
    print(args.input, args.class_names, depth_map_path, rage_matrices_path)
    mp.set_start_method("spawn", force=True)
    setup_logger(name="fvcore")
    logger = setup_logger()
    logger.info("Arguments: " + str(args))

    cfg = setup_cfg(args)

    demo = VisualizationDemo(cfg)
    class_names = args.class_names
    print(args.input)
    if args.input:
        if len(args.input) == 1:
            args.input = glob.glob(os.path.expanduser(args.input[0]))
            assert args.input, "The input path(s) was not found"
        for path in tqdm.tqdm(args.input, disable=not args.output):
            # use PIL, to be consistent with evaluation
            start_time = time.time()
            predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path)
            logger.info(
                "{}: {} in {:.2f}s".format(
                    path,
                    "detected {} instances".format(len(predictions["instances"]))
                    if "instances" in predictions
                    else "finished",
                    time.time() - start_time,
                )
            )

            if args.output:
                if os.path.isdir(args.output):
                    assert os.path.isdir(args.output), args.output
                    out_filename = os.path.join(args.output, os.path.basename(path))
                else:
                    assert len(args.input) == 1, "Please specify a directory with args.output"
                    out_filename = args.output
                visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png')
                visualized_output_depth.save('outputs/Depth_Semantic_SAM.png')
                visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png')
                visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png')
                rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path)
                depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path)
                rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
                depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
                np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask)
                demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path)
            else:
                cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
                cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1])
                if cv2.waitKey(0) == 27:
                    break  # esc to quit
    else:
        raise NotImplementedError
    
    Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
    RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
    Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
    RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
    two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
    two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
    Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
    RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
    Depth_map = read_image('outputs/Depth_rendered.png')
    Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
    RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
    return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif

def greet_scannet(rgb_input, depth_map_input, class_candidates):
    rgb_input = rgb_input
    depth_map_input = depth_map_input.name
    class_candidates = class_candidates.split(', ')
    print(rgb_input, depth_map_input, class_candidates)
    mp.set_start_method("spawn", force=True)
    args = get_parser().parse_args()
    setup_logger(name="fvcore")
    logger = setup_logger()
    logger.info("Arguments: " + str(args))

    cfg = setup_cfg(args)

    demo = VisualizationDemoIndoor(cfg)
    """ args.input = glob.glob(os.path.expanduser(args.input[0]))
    assert args.input, "The input path(s) was not found" """
    start_time = time.time()
    predictions, output2D, output3D = demo.run_on_pcd_ui(rgb_input, depth_map_input, class_candidates)

    output2D['sem_seg_on_rgb'].save('outputs/RGB_Semantic_SAM.png')
    output2D['sem_seg_on_depth'].save('outputs/Depth_Semantic_SAM.png')
    output2D['sam_seg_on_rgb'].save('outputs/RGB_Semantic_SAM_Mask.png')
    output2D['sam_seg_on_depth'].save('outputs/Depth_Semantic_SAM_Mask.png')
    """ rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', path)
    depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', path)
    rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', path)
    depth_3d_sam_mask = demo.get_xyzrgb(outputs/'Depth_Semantic_SAM_Mask.png', path) """
    rgb_3d_sem = output3D['rgb_3d_sem']
    depth_3d_sem = output3D['depth_3d_sem']
    rgb_3d_sam = output3D['rgb_3d_sam']
    depth_3d_sam = output3D['depth_3d_sam']
    
    np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sem, depth_3d_sam = depth_3d_sem, rgb_3d_sam_mask = rgb_3d_sam, depth_3d_sam_mask = depth_3d_sam)
    demo.render_3d_video('outputs/xyzrgb.npz')

    Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
    RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
    Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png')
    RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png')
    two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D')
    two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D')
    Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4'
    RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4'
    Depth_map = read_image('outputs/Depth_rendered.png')
    Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4'
    RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4'
    return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif

SHARED_UI_WARNING = f'''### [NOTE]  It may be very slow in this shared UI.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/mmlab-ntu/Segment-Any-RGBD?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on your own computer.
<a style="display:inline-block" href="https://github.com/Jun-CEN/SegmentAnyRGBD/"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/Project%20Page-online-brightgreen"></a>
'''

with gr.Blocks(analytics_enabled=False) as segrgbd_iface:
    with gr.Box():
        gr.Markdown(SHARED_UI_WARNING)
    #######t2v#######
    with gr.Tab(label="Dataset: Sailvos3D"):
        with gr.Column():
            with gr.Row():
                # with gr.Tab(label='input'):
                with gr.Column():
                    with gr.Row():
                        Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
                        Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
                    with gr.Row():
                        Depth_Map_Input_Component = gr.File(label = 'input_Depth_map')
                        Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters')
                    with gr.Row():
                        Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
                    vc_end_btn = gr.Button("Send")
                with gr.Tab(label='Result'):
                    with gr.Row():
                        RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
                        RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
                    with gr.Row():
                        Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
                        Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
                    with gr.Row():
                        gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
            gr.Examples(examples=[
                    [
                        'UI/sailvos3d/ex1/inputs/rgb_000160.bmp',
                        'UI/sailvos3d/ex1/inputs/depth_000160.npy',
                        'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz',
                        'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
                    ],
                    [
                        'UI/sailvos3d/ex2/inputs/rgb_000540.bmp',
                        'UI/sailvos3d/ex2/inputs/depth_000540.npy',
                        'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz',
                        'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
                    ]],
                        inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
                        outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                        fn=greet_sailvos3d)
        vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
                        outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                        fn=greet_sailvos3d)
        
    with gr.Tab(label="Dataset: Scannet"):
        with gr.Column():
            with gr.Row():
                # with gr.Tab(label='input'):
                with gr.Column():
                    with gr.Row():
                        Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
                        Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200)
                    with gr.Row():
                        Depth_Map_Input_Component = gr.File(label = "Input_Depth_Map")
                        Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
                    vc_end_btn = gr.Button("Send")
                with gr.Tab(label='Result'):
                    with gr.Row():
                        RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
                        RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
                    with gr.Row():
                        Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
                        Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
                    with gr.Row():
                        gr.Markdown("<b> It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.</b>")
            gr.Examples(examples=[
                    [
                        'UI/scannetv2/examples/scene0000_00/color/1660.jpg',
                        'UI/scannetv2/examples/scene0000_00/depth/1660.png',
                        'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
                    ],
                    [
                        'UI/scannetv2/examples/scene0000_00/color/5560.jpg',
                        'UI/scannetv2/examples/scene0000_00/depth/5560.png',
                        'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture',
                    ]],
                        inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
                        outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                        fn=greet_scannet)
        vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component],
                        outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                        fn=greet_scannet)

demo = segrgbd_iface
demo.launch()