|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
learn = load_learner("resnet18.pkl") |
|
|
|
categories = ("Healthy", "Peacock Spot") |
|
|
|
|
|
def classify_health(input_img): |
|
pred, idx, probs = learn.predict(input_img) |
|
return dict(zip(categories, map(float, probs))) |
|
|
|
|
|
labels = gr.Label() |
|
examples = [ |
|
"examples/healthy.jpg", |
|
"examples/healthy2.jpg", |
|
"examples/peacock_spot.jpeg", |
|
] |
|
demo = gr.Interface( |
|
classify_health, |
|
inputs=gr.Image(height=224, width=224), |
|
outputs=labels, |
|
examples=examples, |
|
) |
|
demo.launch(inline=False) |
|
|