import gradio as gr import PIL.Image as Image from ultralytics import YOLO model = YOLO("best.pt") def predict_image(img, conf_threshold, iou_threshold): results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=gr.Image(type="pil", label="Result"), title="Olive Disease Detector", description="Upload images for inference.", examples=[ ["examples/healthy.jpg", 0.5, 0.45], ["examples/Screenshot_20240916_162647.png", 0.5, 0.4], ["examples/unnamed.jpg", 0.5, 0.4], ["examples/images (1).jpeg", 0.5, 0.4], ["examples/photo_2017_07_30_19_20_37.jpg", 0.5, 0.4], ["examples/aculus_2.jpg", 0.25, 0.45], ["examples/aculus_1.jpg", 0.25, 0.45], ["examples/peacock_2.jpg", 0.25, 0.45], ["examples/peacock_3.jpg", 0.25, 0.45], ], ) if __name__ == "__main__": iface.launch()