import json import subprocess from threading import Thread import os import torch import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer # Update model configuration for Mistral-small-24B MODEL_ID = "mistralai/Mistral-Small-24B-Instruct-2501" CHAT_TEMPLATE = "mistral" # Mistral uses its own chat template MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 32768 # Mistral supports longer context COLOR = "black" EMOJI = "🌪️" # Mistral-themed emoji DESCRIPTION = f"This is {MODEL_NAME} model, a powerful 24B parameter language model from Mistral AI." def load_system_message(): try: with open('system_message.txt', 'r', encoding='utf-8') as file: return file.read().strip() except FileNotFoundError: print("Warning: system_message.txt not found. Using default message.") return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking." except Exception as e: print(f"Error loading system message: {e}") return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking." SYSTEM_MESSAGE = load_system_message() @spaces.GPU() def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): # Format history using Mistral's chat template messages = [{"role": "system", "content": SYSTEM_MESSAGE}] for user, assistant in history: messages.append({"role": "user", "content": user}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) # Convert messages to Mistral format prompt = tokenizer.apply_chat_template(messages, tokenize=False) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) enc = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] attention_mask = attention_mask[:, -CONTEXT_LENGTH:] generate_kwargs = dict( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for new_token in streamer: outputs.append(new_token) yield "".join(outputs) # Load model with optimized settings for Mistral-24B device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, use_double_quant=True, # Enable double quantization bnb_4bit_quant_type="nf4" # Use normal float 4 for better precision ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Set the pad token to be the same as the end of sequence token if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", quantization_config=quantization_config, torch_dtype=torch.bfloat16 ) # Create Gradio interface gr.ChatInterface( predict, title=EMOJI + " " + MODEL_NAME, description=DESCRIPTION, examples=[ ['What are the key differences between classical and quantum computing?'], ['Explain the concept of recursive neural networks in simple terms.'], ['How does transfer learning work in large language models?'], ['What are the ethical considerations in AI development?'] ], additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), additional_inputs=[ gr.Textbox(SYSTEM_MESSAGE, label="System prompt", visible=False), # Hidden system prompt gr.Slider(0, 1, 0.7, label="Temperature"), # Adjusted default for Mistral gr.Slider(0, 32768, 12000, label="Max new tokens"), # Increased for longer context gr.Slider(1, 100, 50, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], ).queue().launch()