Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
# Title for your app | |
st.title("Llama-3-8B-Physics Master - Model Inference") | |
# Load the model and tokenizer from Hugging Face | |
def load_model(): | |
model = AutoModel.from_pretrained("gallen881/Llama-3-8B-Physics_Master-GGUF") | |
tokenizer = AutoTokenizer.from_pretrained("gallen881/Llama-3-8B-Physics_Master-GGUF") | |
return model, tokenizer | |
# Load the model once and store it in cache | |
model, tokenizer = load_model() | |
# Text input for the user | |
user_input = st.text_area("Enter your input here:") | |
if st.button("Generate Output"): | |
if user_input: | |
# Tokenize the input | |
inputs = tokenizer(user_input, return_tensors="pt") | |
# Forward pass through the model | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get the output embeddings or logits (depending on the model structure) | |
# For example, let's say we want to display embeddings | |
st.write("Model Output Embeddings:", outputs.last_hidden_state) | |
else: | |
st.write("Please enter some input.") | |