Spaces:
Runtime error
Runtime error
palegre
commited on
Commit
·
b19c8bc
0
Parent(s):
Add application file beta.
Browse files- .gitattributes +1 -0
- app.py +115 -0
- data/PROPUESTA-DE-BORRADOR-CONSTITUCIONAL-14.05.22-1.pdf +3 -0
- data/articles.csv +0 -0
- pdf_to_text.py +87 -0
- qa_pipeline_faiss.py +76 -0
- requirements.txt +4 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# %%
|
| 3 |
+
import os
|
| 4 |
+
from time import sleep
|
| 5 |
+
|
| 6 |
+
from haystack.document_stores import ElasticsearchDocumentStore
|
| 7 |
+
from haystack.utils import launch_es
|
| 8 |
+
|
| 9 |
+
launch_es()
|
| 10 |
+
sleep(30)
|
| 11 |
+
# %%
|
| 12 |
+
os.environ["HAYSTACK_TELEMETRY_ENABLED"] = "False"
|
| 13 |
+
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document")
|
| 14 |
+
# %%
|
| 15 |
+
import pandas as pd
|
| 16 |
+
|
| 17 |
+
df_document = pd.read_csv("data/articles.csv")
|
| 18 |
+
df_document.head()
|
| 19 |
+
# %%
|
| 20 |
+
articles = []
|
| 21 |
+
for idx, row in df_document.iterrows():
|
| 22 |
+
article = {
|
| 23 |
+
"id": idx,
|
| 24 |
+
"content": row["article"],
|
| 25 |
+
"meta":{
|
| 26 |
+
"chapter_name": row["chapter_name"],
|
| 27 |
+
"article_page": row["article_page"],
|
| 28 |
+
"article_number": row["article_number"],
|
| 29 |
+
"article_name": row["article_name"],
|
| 30 |
+
},
|
| 31 |
+
}
|
| 32 |
+
articles.append(article)
|
| 33 |
+
|
| 34 |
+
document_store.write_documents(articles, index="document")
|
| 35 |
+
print(f"Loaded {document_store.get_document_count()} documents")
|
| 36 |
+
# %%
|
| 37 |
+
from haystack.nodes import BM25Retriever
|
| 38 |
+
|
| 39 |
+
retriever = BM25Retriever(document_store=document_store)
|
| 40 |
+
# %%
|
| 41 |
+
from haystack.nodes import FARMReader
|
| 42 |
+
|
| 43 |
+
model_ckpt = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es"
|
| 44 |
+
reader = FARMReader(
|
| 45 |
+
model_name_or_path=model_ckpt,
|
| 46 |
+
progress_bar=False,
|
| 47 |
+
max_seq_len=384,
|
| 48 |
+
doc_stride=128,
|
| 49 |
+
return_no_answer=False,
|
| 50 |
+
use_gpu=False,
|
| 51 |
+
)
|
| 52 |
+
# %%
|
| 53 |
+
from haystack.pipelines import ExtractiveQAPipeline
|
| 54 |
+
|
| 55 |
+
pipe = ExtractiveQAPipeline(reader, retriever)
|
| 56 |
+
# %%
|
| 57 |
+
from textwrap import fill
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def run_qa_pipeline(question):
|
| 61 |
+
results = pipe.run(
|
| 62 |
+
query=question,
|
| 63 |
+
params={
|
| 64 |
+
"Retriever": {"top_k": 10},
|
| 65 |
+
"Reader": {"top_k": 5}
|
| 66 |
+
}
|
| 67 |
+
)
|
| 68 |
+
return results
|
| 69 |
+
|
| 70 |
+
def results_as_markdown(results):
|
| 71 |
+
top_answers = []
|
| 72 |
+
for count, result in enumerate(results["answers"]):
|
| 73 |
+
article = document_store.get_document_by_id(result.document_id)
|
| 74 |
+
meta = result.meta
|
| 75 |
+
formatted_answer = """**Capítulo: {}.\t número: {}.\t nombre: {}.\t página: {}.**
|
| 76 |
+
{}
|
| 77 |
+
""".format(
|
| 78 |
+
meta["chapter_name"],
|
| 79 |
+
meta["article_number"],
|
| 80 |
+
meta["article_name"],
|
| 81 |
+
meta["article_page"],
|
| 82 |
+
fill(article.content, 80),
|
| 83 |
+
)
|
| 84 |
+
top_answers.append(formatted_answer)
|
| 85 |
+
|
| 86 |
+
return "\n\n".join(top_answers)
|
| 87 |
+
|
| 88 |
+
def query_qa_pipeline(question):
|
| 89 |
+
results = run_qa_pipeline(question)
|
| 90 |
+
return results_as_markdown(results)
|
| 91 |
+
|
| 92 |
+
# %%
|
| 93 |
+
import gradio as gr
|
| 94 |
+
|
| 95 |
+
title = "**CONSOLIDADO NORMAS APROBADAS PARA LA PROPUESTA CONSTITUCIONAL POR EL PLENO DE LA CONVENCIÓN**"
|
| 96 |
+
default_question = "educación gratuita"
|
| 97 |
+
|
| 98 |
+
with gr.Blocks() as demo:
|
| 99 |
+
gr.Markdown(title)
|
| 100 |
+
with gr.Column():
|
| 101 |
+
with gr.Row():
|
| 102 |
+
question = gr.Textbox(lines=2, max_lines=3, label="Pregunta:", placeholder=default_question)
|
| 103 |
+
with gr.Row():
|
| 104 |
+
btn = gr.Button("Buscar")
|
| 105 |
+
with gr.Row():
|
| 106 |
+
answers = gr.Markdown()
|
| 107 |
+
btn.click(
|
| 108 |
+
fn=query_qa_pipeline,
|
| 109 |
+
inputs=question,
|
| 110 |
+
outputs=answers,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
demo.launch(share=True)
|
| 114 |
+
|
| 115 |
+
# %%
|
data/PROPUESTA-DE-BORRADOR-CONSTITUCIONAL-14.05.22-1.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be2629a7708b19a9eeadb6d416e7c761cfeb483531a992706d2c732894468b18
|
| 3 |
+
size 1469444
|
data/articles.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pdf_to_text.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
import fitz
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
# %%
|
| 8 |
+
document_path = "data/PROPUESTA-DE-BORRADOR-CONSTITUCIONAL-14.05.22-1.pdf"
|
| 9 |
+
|
| 10 |
+
# %%
|
| 11 |
+
skip_header_offset = 1
|
| 12 |
+
regex_article = re.compile(r"(\d+\.- ?Artículo.+?(?:\.|-))")
|
| 13 |
+
regex_chapters = re.compile(r"(?<=\n)(CAPÍTULO \(COM \d+\) \n.+?)(?= \n)")
|
| 14 |
+
# %%
|
| 15 |
+
document = ""
|
| 16 |
+
page_article = {}
|
| 17 |
+
pdf_page_offset = 1
|
| 18 |
+
with fitz.open(document_path) as doc:
|
| 19 |
+
for page_idx, page in enumerate(doc, pdf_page_offset):
|
| 20 |
+
text = page.get_text()
|
| 21 |
+
document += text
|
| 22 |
+
articles = regex_article.findall(text)
|
| 23 |
+
for article in articles:
|
| 24 |
+
page_article[article] = page_idx
|
| 25 |
+
|
| 26 |
+
len(page_article)
|
| 27 |
+
# %%
|
| 28 |
+
chapters = {}
|
| 29 |
+
chapter_name = "header"
|
| 30 |
+
splited_chapters = regex_chapters.split(document)
|
| 31 |
+
for chapter in splited_chapters[skip_header_offset:]:
|
| 32 |
+
if chapter.startswith("CAPÍTULO"):
|
| 33 |
+
chapter_name = chapter.replace(" \n", ": ")
|
| 34 |
+
else:
|
| 35 |
+
chapters[chapter_name] = chapter
|
| 36 |
+
len(chapters), chapters.keys()
|
| 37 |
+
# %%
|
| 38 |
+
minimum_article_length = 65
|
| 39 |
+
def format_article(article):
|
| 40 |
+
articles = article.lstrip('- ').split("\n \n")
|
| 41 |
+
formated_articles = []
|
| 42 |
+
for article in articles:
|
| 43 |
+
formated_article = article.replace("\n", "").replace("*", "").strip()
|
| 44 |
+
is_article_single = formated_article.startswith("El Estado")
|
| 45 |
+
is_article_too_short = len(formated_article) <= minimum_article_length
|
| 46 |
+
|
| 47 |
+
if is_article_too_short and not is_article_single:
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
formated_articles.append(formated_article)
|
| 51 |
+
|
| 52 |
+
sentence = " ".join(formated_articles)
|
| 53 |
+
return sentence
|
| 54 |
+
|
| 55 |
+
# %%
|
| 56 |
+
chapter_articles = []
|
| 57 |
+
for chapter_name, chapter in chapters.items():
|
| 58 |
+
article_name = "header"
|
| 59 |
+
splited_articles = regex_article.split(chapter)
|
| 60 |
+
for article in splited_articles[skip_header_offset:]:
|
| 61 |
+
if regex_article.match(article):
|
| 62 |
+
article_name = article
|
| 63 |
+
continue
|
| 64 |
+
|
| 65 |
+
data = {
|
| 66 |
+
"chapter_name": chapter_name,
|
| 67 |
+
"article_page": page_article.get(article_name),
|
| 68 |
+
"article_name": article_name,
|
| 69 |
+
"article": format_article(article),
|
| 70 |
+
}
|
| 71 |
+
chapter_articles.append(data)
|
| 72 |
+
# %%
|
| 73 |
+
df_document = pd.DataFrame.from_dict(chapter_articles)
|
| 74 |
+
|
| 75 |
+
df_document["article_number"] = (
|
| 76 |
+
df_document['article_name']
|
| 77 |
+
.str.extract(r'(^\d+)', expand=False)
|
| 78 |
+
)
|
| 79 |
+
df_document["article_name"] = (
|
| 80 |
+
df_document['article_name']
|
| 81 |
+
.str.extract(r'^\d+\.- ?(.*)', expand=False)
|
| 82 |
+
.str.rstrip(".-")
|
| 83 |
+
)
|
| 84 |
+
df_document.head()
|
| 85 |
+
# %%
|
| 86 |
+
df_document.to_csv("data/articles.csv", index=False)
|
| 87 |
+
# %%
|
qa_pipeline_faiss.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
from haystack.document_stores import FAISSDocumentStore
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
document_store = FAISSDocumentStore(faiss_index_factory_str="Flat")
|
| 6 |
+
# %%
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
df_document = pd.read_csv("data/articles.csv")
|
| 10 |
+
|
| 11 |
+
articles = []
|
| 12 |
+
for idx, row in df_document.iterrows():
|
| 13 |
+
article = {
|
| 14 |
+
"content": row["article"],
|
| 15 |
+
"meta":{
|
| 16 |
+
"chapter_name": row["chapter_name"],
|
| 17 |
+
"article_page": row["article_page"],
|
| 18 |
+
"article_number": row["article_number"],
|
| 19 |
+
"article_name": row["article_name"],
|
| 20 |
+
},
|
| 21 |
+
}
|
| 22 |
+
articles.append(article)
|
| 23 |
+
|
| 24 |
+
document_store.write_documents(articles, index="document")
|
| 25 |
+
print(f"Loaded {document_store.get_document_count()} documents")
|
| 26 |
+
# %%
|
| 27 |
+
from haystack.nodes import DensePassageRetriever
|
| 28 |
+
|
| 29 |
+
retriever = DensePassageRetriever(
|
| 30 |
+
document_store=document_store,
|
| 31 |
+
query_embedding_model="sadakmed/dpr-passage_encoder-spanish",
|
| 32 |
+
passage_embedding_model="sadakmed/dpr-passage_encoder-spanish",
|
| 33 |
+
max_seq_len_query=64,
|
| 34 |
+
max_seq_len_passage=384,
|
| 35 |
+
batch_size=16,
|
| 36 |
+
use_gpu=False,
|
| 37 |
+
embed_title=True,
|
| 38 |
+
use_fast_tokenizers=True,
|
| 39 |
+
)
|
| 40 |
+
document_store.update_embeddings(retriever)
|
| 41 |
+
# %%
|
| 42 |
+
from haystack.nodes import FARMReader
|
| 43 |
+
|
| 44 |
+
model_ckpt = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es"
|
| 45 |
+
reader = FARMReader(
|
| 46 |
+
model_name_or_path=model_ckpt,
|
| 47 |
+
progress_bar=False,
|
| 48 |
+
max_seq_len=384,
|
| 49 |
+
doc_stride=128,
|
| 50 |
+
return_no_answer=True,
|
| 51 |
+
use_gpu=False,
|
| 52 |
+
)
|
| 53 |
+
# %%
|
| 54 |
+
from haystack.pipelines import ExtractiveQAPipeline
|
| 55 |
+
|
| 56 |
+
pipe = ExtractiveQAPipeline(reader, retriever)
|
| 57 |
+
# %%
|
| 58 |
+
question = "pueblos originarios justicia"
|
| 59 |
+
prediction = pipe.run(
|
| 60 |
+
query=question,
|
| 61 |
+
params={
|
| 62 |
+
"Retriever": {"top_k": 10},
|
| 63 |
+
"Reader": {"top_k": 5}
|
| 64 |
+
}
|
| 65 |
+
)
|
| 66 |
+
# %%
|
| 67 |
+
from pprint import pprint
|
| 68 |
+
|
| 69 |
+
pprint(prediction)
|
| 70 |
+
|
| 71 |
+
# %%
|
| 72 |
+
from haystack.utils import print_answers
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
print_answers(prediction, details="minimum")
|
| 76 |
+
# %%
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PyMuPDF
|
| 2 |
+
haystack
|
| 3 |
+
pandas
|
| 4 |
+
gradio
|