import gradio as gr
import torch
import time
import librosa
import soundfile
import nemo.collections.asr as nemo_asr
import tempfile
import os
import uuid

from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch

# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

# ---------------------------------------------
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
# This should allow you to save your results to your own Dataset hosted on HF. 

DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/ASRLive.csv"
DATASET_REPO_ID = "awacke1/ASRLive.csv"
DATA_FILENAME = "ASRLive.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")

PersistToDataset = False
#PersistToDataset = True  # uncomment to save inference output to ASRLive.csv dataset

if PersistToDataset:
    try:
        hf_hub_download(
            repo_id=DATASET_REPO_ID,
            filename=DATA_FILENAME,
            cache_dir=DATA_DIRNAME,
            force_filename=DATA_FILENAME
        )
    except:
        print("file not found")
    repo = Repository(
        local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
    )
           
def store_message(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
            writer.writerow(
                {"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
            )
        # uncomment line below to begin saving - 
        commit_url = repo.push_to_hub()
        ret = ""
        with open(DATA_FILE, "r") as csvfile:
            reader = csv.DictReader(csvfile)
            
            for row in reader:
                ret += row
                ret += "\r\n"
    return ret            

# main -------------------------
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)

def take_last_tokens(inputs, note_history, history):
    filterTokenCount = 128 # filter last 128 tokens
    if inputs['input_ids'].shape[1] > filterTokenCount:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-filterTokenCount:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-filterTokenCount:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history

def add_note_to_history(note, note_history):
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]



SAMPLE_RATE = 16000
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
model.change_decoding_strategy(None)
model.eval()

def process_audio_file(file):
    data, sr = librosa.load(file)
    if sr != SAMPLE_RATE:
        data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
    data = librosa.to_mono(data)
    return data


def transcribe(audio, state = ""):   
    if state is None:
        state = ""
    audio_data = process_audio_file(audio)
    with tempfile.TemporaryDirectory() as tmpdir:
        audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
        soundfile.write(audio_path, audio_data, SAMPLE_RATE)
        transcriptions = model.transcribe([audio_path])
        if type(transcriptions) == tuple and len(transcriptions) == 2:
            transcriptions = transcriptions[0]
        transcriptions = transcriptions[0]
        
    if PersistToDataset:
        ret = store_message(transcriptions, state) # Save to dataset - uncomment to store into a dataset - hint you will need your HF_TOKEN
        state = state + transcriptions + " " + ret
    else:
        state = state + transcriptions
    return state, state

gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(source="microphone", type='filepath', streaming=True),
        "state",
    ],
    outputs=[
        "textbox",
        "state"
    ],
    layout="horizontal",
    theme="huggingface",
    title="🗣️ASR-Gradio-Live🧠💾",
    description=f"Live Automatic Speech Recognition (ASR).",
    allow_flagging='never',
    live=True,    
    article=f"Result💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
).launch(debug=True)