missvector commited on
Commit
608d7cd
·
1 Parent(s): 1a3ed87

Update space

Browse files
Files changed (1) hide show
  1. app.py +91 -47
app.py CHANGED
@@ -1,62 +1,106 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import ast
4
+ from graphviz import Digraph
5
 
6
+ client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
 
 
 
7
 
8
+ def sampling(num_samples, num_associations):
9
+ outputs = ast.literal_eval(client.chat.completions.create(
10
+ messages=[
11
+ {"role": "system", "content": "generate one json object, no explanation or additional text, use the following structure:\n"
12
+ "words: []\n"
13
+ f"{num_samples} samples in a list"
14
+ },
15
+ {"role": "user",
16
+ "content": f"synthesize {num_samples} random but widespread words for semantic modeling"},
17
+ ],
18
+ response_format={
19
+ "type": "json",
20
+ "value": {
21
+ "properties": {
22
+ "words": {"type": "array", "items": {"type": "string"}},
23
+ }
24
+ }
25
+ },
26
+ stream=False,
27
+ max_tokens=1024,
28
+ temperature=0.7,
29
+ top_p=0.1
30
+ ).choices[0].get('message')['content'])
31
 
32
+ fields = {}
 
 
 
 
 
 
 
 
33
 
34
+ for word in outputs['words']:
35
+ fields[word] = ast.literal_eval(client.chat.completions.create(
36
+ messages=[
37
+ {"role": "system", "content": 'generate one json object, no explanation or additional text, use the following structure:\n'
38
+ 'associations: []'
39
+ },
40
+ {"role": "user",
41
+ "content": f"synthesize {num_associations} associations for the word {word}"},
42
+ ],
43
+ response_format={
44
+ "type": "json",
45
+ "value": {
46
+ "properties": {
47
+ "associations": {"type": "array", "items": {"type": "string"}}
48
+ }
49
+ }
50
+ },
51
+ stream=False,
52
+ max_tokens=2000,
53
+ temperature=0.7,
54
+ top_p=0.1
55
+ ).choices[0].get('message')['content'])
56
 
57
+ triplets = []
58
 
59
+ for cluster in fields:
60
+ for association in fields[cluster]['associations']:
61
+ triplets.append(ast.literal_eval(client.chat.completions.create(
62
+ messages=[
63
+ {"role": "system", "content": "generate one json object, no explanation or additional text, use the following structure:\n"
64
+ "properties: [subject, predicate, object]\n"
65
+ "use chain-of-thought for predictions"
66
+ },
67
+ {"role": "user",
68
+ "content": f"form triplet based on semantics: generate predicate between the word {cluster} (subject) and the word {association} (object); return list with [subject, predicate, object]"},
69
+ ],
70
+ response_format={
71
+ "type": "json",
72
+ "value": {
73
+ "properties": {
74
+ "properties": {"type": "array", "items": {"type": "string"}}
75
+ }
76
+ }
77
+ },
78
+ stream=False,
79
+ max_tokens=128,
80
+ temperature=0.7,
81
+ top_p=0.1
82
+ ).choices[0].get('message')['content']))
83
 
84
+ dot = Digraph(comment=f'SynthNet, {num_samples} samples, {num_associations} associations', graph_attr={'rankdir': 'LR'})
 
 
 
 
 
 
 
85
 
86
+ for entry in triplets:
87
+ source, label, target = entry['properties']
88
+ dot.node(source, source)
89
+ dot.node(target, target)
90
+ dot.edge(source, target, label=label)
91
 
92
+ dot.render('synthnet', format='png')
93
+ return 'synthnet.png'
94
 
95
+ demo = r.Interface(
96
+ inputs=[
97
+ gr.Slider(minimum=1, maximum=256, label="Number of Samples"),
98
+ gr.Slider(minimum=1, maximum=256, label="Number of Associations to each Sample"),
99
+ ],
100
+ fn=sampling,
101
+ outputs=gr.Image(type="filepath"),
102
+ title="SynthNet",
103
+ description="Select a number of samples and assiciations to each sample to generate a graph.",
 
 
 
 
 
 
 
 
104
  )
105
 
106