import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer model_name = "wanglab/ClinicalCamel-70B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # Function to generate responses def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt").to("cuda") # Use GPU if available outputs = model.generate(**inputs, max_new_tokens=150) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="ClinicalCamel-70B Assistant") if __name__ == "__main__": iface.launch()